
Negation recognition in medical narrative reports

Lior Rokach Æ Roni Romano Æ Oded Maimon

Received: 18 September 2007 / Accepted: 20 May 2008 / Published online: 7 June 2008
� Springer Science+Business Media, LLC 2008

Abstract Substantial medical data, such as discharge summaries and operative reports

are stored in electronic textual form. Databases containing free-text clinical narratives

reports often need to be retrieved to find relevant information for clinical and research

purposes. The context of negation, a negative finding, is of special importance, since many

of the most frequently described findings are such. When searching free-text narratives for

patients with a certain medical condition, if negation is not taken into account, many of the

documents retrieved will be irrelevant. Hence, negation is a major source of poor precision

in medical information retrieval systems. Previous research has shown that negated find-

ings may be difficult to identify if the words implying negations (negation signals) are

more than a few words away from them. We present a new pattern learning method for

automatic identification of negative context in clinical narratives reports. We compare the

new algorithm to previous methods proposed for the same task, and show its advantages:

accuracy improvement compared to other machine learning methods, and much faster than

manual knowledge engineering techniques with matching accuracy. The new algorithm

can be applied also to further context identification and information extraction tasks.

Keywords Text classification � Part-of-speech tagging � Negation �
Narrative medical reports � Artificial intelligence

1 Introduction and motivation

Information retrieval of free text is now an established and well-known application with

vast popularity. The limitations of naı̈ve keyword based information retrieval are also well

understood and many research works are focused around this issue.

L. Rokach (&)
Department of Information Systems Engineering, Ben Gurion University, P.O. Box 653,
Beer Sheva 84105, Israel
e-mail: liorrk@bgu.ac.il

R. Romano � O. Maimon
Department of Industrial Engineering, Tel-Aviv University, Tel-Aviv, Israel

123

Inf Retrieval (2008) 11:499–538
DOI 10.1007/s10791-008-9061-0

The primary application of this work is in improving the information retrieval from

medical narratives. Medical narratives present some unique problems that are not normally

encountered in other kinds of texts. When a physician writes an encounter note, a highly

telegraphic form of language may be used. There are often very few (if any) grammatically

proper sentences and acronyms and abbreviations are frequently used. Many of these

abbreviations and acronyms are highly idiosyncratic and may not be found in a general

dictionary.

Information retrieval from medical narratives has many applications: enrollment of

patients into clinical trials; detecting adverse events; modern evidence-based practice;

and medical research in general. A typical application scenario may involve a hospital-

based medical investigator receiving from a pharmaceutical company a patient profile for

a planned clinical trial. The profile includes attributes that cannot be used as is in a

structured query of the hospital information systems. Example of such a patient profile

is: ‘‘Male and female, 18 years and older; Female must not be pregnant; Location of
pain must be low back area; Pain must be present for three months or greater; No
surgical intervention in the past 12 months nor plans for surgical intervention for the
low back pain during the duration of the study.’’ Most of the data needed for locating

patients meeting the above profile is stored as electronic medical narratives in the

hospital information systems.

The medical investigator retrieves such records by a keyword-based search. The key-

words primarily include: diagnostic names, symptoms, procedures, medicine, etc. A useful

knowledge source designed for resolving medical terms is the Unified Medical Language

System (UMLS) (Lindbergh and Humphreys 1993).

The common use-case when searching in discharge summaries is looking for patients

with specific symptom, for example, nausea. The issue of context is very important.

Consider the sentence: ‘‘He complained at admission of headache, nausea, vomiting, and
neck soreness’’ versus ‘‘The patient denies any headache, nausea, vomiting, blurring vision
and fever.’’ Both sentences will match a naı̈ve keyword based query containing the term

nausea. We assume that the person initiating the query is looking for patients with a

specific symptom (e.g. nausea). For example, the sentence ‘‘The patient states she had
fever and chills two nights prior to admission with a nonproductive cough’’ taken from a

discharge summary report is a positive example for fever and chills diagnoses, while

another sentence from a discharge report: ‘‘The patient denied any cough, chest pain,
urinary symptoms or bowel symptoms’’ is a negative example for cough, chest pain, urinary

symptoms and bowel symptoms diagnoses.

A search for patients with a specific symptom or set of findings might result in

numerous records retrieved. The mere presence of a search term in the text, however, does

not imply that retrieved records are indeed relevant to the query. Depending upon the

various contexts that a term might have, only a portion of the retrieved records may

actually be relevant. Therefore, in addition to excluding negated concepts, there are

additional contexts we opt to exclude. For example: ‘‘The patient as well as her daughter
were given very clear instructions to call or return for any nausea, vomiting, bleeding, or
any unusual symptoms.’’; and the sentence: ‘‘The patient could not tolerate the nausea and
vomiting associated with Carboplatin’’; ‘‘She is married, lives with her husband and
admits to drinking alcohol excessively in the remote past.’’; and more.

This work introduces a new supervised method for inducing a sequence-aware (or

sequence sensitive) classifier. First, we automatically discover a set of sequence patterns

that are described as regular expressions. Then a classifier is induced to classify instances

based on their matching to the discovered set of sequence patterns. We show the

500 Inf Retrieval (2008) 11:499–538

123

advantages of the new method by applying it to a well-known and well-defined problem in

the medical domain. It is estimated that ignoring negations in medical narrative reports

may reduce the retrieval performance in about 40% (Averbuch et al. 2004). Thus, the goal

is to improve the information retrieval accuracy by correctly identifying the context of the

keyword being searched.

The issues encountered in dealing with this problem constitute a special case of context

identification in free text, one of the key research problems in the field of text mining. We

compare the results obtained using our proposed method to previous works which

implement two primary methodologies: knowledge engineering; and machine learning.

The knowledge engineering approach is based on handcrafted patterns for identifying the

negated context. Such methods yield high accuracy but are labor-intensive, domain spe-

cific, and tedious to maintain. The more modern methods are based on machine learning

techniques. The bag-of-words is considered as one of the prominent machine learning

techniques for classification problems. The negative context detection can be formulated as

a text classification problem and solved using bag-of-words. The negation problem is

closely related to the part-of-speech tagging (POS) problem, which is properly solved by

frameworks for labeling sequential data, such as hidden Markov model (HMM) and

conditional random fields (CRF). In this work, we compare our new method to the

abovementioned techniques. Our new method is much faster than manual knowledge

engineering techniques with matching accuracy. We show that our new method achieves

higher accuracy compared to existing methods.

2 Related works

The negation problem in medical reports can be solved in various ways. First, in addition to

existing general purpose text classification methods that can be used, there are several

information extraction (IE) methods that can also be implemented. After discussing these

methods, we survey specific works regarding the negation problem in general and in the

medical domain in particular. Finally, we discuss evaluation measures that can be used for

estimating the quality of the solutions.

2.1 Text classification

A comprehensive survey of the methods used for text categorization (Sebastiani 2002)

describes the recent research trends. The machine-learning paradigm of automatic classifier

construction has emerged and definitely superseded the knowledge-engineering approach.

Within the machine-learning paradigm, a classifier is built by learning from a set of

previously classified documents. The advantages of the machine learning approach as per

Sebastiani are a very good effectiveness, a considerable savings in terms of expert man-

power, and domain independence.

2.1.1 Bag-of-words

Since texts cannot be directly interpreted by a classifier or by a classifier-building algo-

rithm, it is necessary to uniformly apply a transformation procedure to the text corpora in

order to map a text dj into a compact representation of its content (Sebastiani 2002). In text

Inf Retrieval (2008) 11:499–538 501

123

categorization (TC) a text dj is usually represented as a vector of term weights dj ¼
ðw1j; . . .;wjVjjÞ where V is the set of terms (sometimes called features) that occur at least

once in at least one document of Tr, and where 0 B wkj B 1 represents, loosely speaking,

how many term tk contributes to the semantics of document dj. Differences among

approaches are accounted for by (1) different ways to understand what a term is; (2)

different ways to compute term weights. A typical choice for the first alternative is to

identify terms with words. Depending on whether weights are binary or not, this approach

is often called either the ‘‘set of words’’ or the ‘‘bag-of- words’’ approach to document

representation.

The following example demonstrates the bag-of-words representation applied to our

domain. Consider the two sentences: (1) The patient was therefore admitted to the hospital
and started on\MEDICINE[as treatments for\DIAGNOSIS[; and (2) The patient was
ruled in for \DIAGNOSIS[and started \MEDICINE[for \DIAGNOSIS[. Taking case

insensitive single words as features and binary weights yields the representation shown in

Fig. 1.

One of the main drawbacks of the bag-of-words representation is in its destruction of

semantic relations between words; the meaning of word combinations is lost (Bekkerman

and Allen 2003). As presented in Fig. 1, this representation loses the meaning of important

terms such as ‘‘ruled in’’. This bag-of-words limitation is especially important for the

negation detection, Averbuch et al. (2004) show that a negation profile contains only ten

words and/or phrases, half of these are bi-grams.

2.1.2 n-gram

Another popular choice for text representation is to identify terms with word sequences of

length n. This n-gram vector text representation method is used to classify text documents

(Damashek 1995). Damashek selected the normalized frequency with which the n-gram

occurs in the document as the choice of (2) term weight. Each vector identifies a point in a

multidimensional space, and similar documents are expected to have points close to each

other. Damashek (1995) used the dot product between two histogram vectors as a measure

of their similarity, but he pointed out that other measures are possible.

Caropreso et al. (2001) experimented with n-grams for text categorization on the

Reuters dataset. They define an n-gram as an alphabetically ordered sequence of n stems of

consecutive words in a sentence (after stop words were removed). The authors use both

unigrams (bag-of-words) and bigrams as document features. They extract the top-scored

features using various feature selection methods including mutual information (see, e.g.,

Dumais et al. 1998). Their results indicate that in general bigrams can better predict

categories than unigrams.

the

patient

w
as

therefore

adm
itted

to

hospital

and

started

on

<
m

edicine>

as

treatm
ent

for

<
diagnosis>

ruled

in

1

1

1

1

1

1

0

0

0

1

0

1

0

1

1

1

1

1

0

1

1

1

0

1

0

0

1

1

1

1

1

0

1

0

Second sentence

First sentence

Fig. 1 Bag-of-words representation

502 Inf Retrieval (2008) 11:499–538

123

2.1.3 Regular expressions

A regular expression is defined as any string that describes or matches a set of strings

according to certain syntax rules. Regular expressions are usually used to give a

concise description of a set without having to list all elements. The regular expression

consists of a letter of the alphabet and special characters. For example, the set con-

taining the four strings: hat, hit, hot and hut can be described by the pattern ‘‘h.t’’ (or

alternatively, it is said that the pattern matches each of the four strings). The wild-card

(‘‘.’’) denotes a single position that can be occupied by any letter of the alphabet. The

curly brackets are used to indicate a match between min and max of the preceding

characters. For instance the pattern ‘‘without .{0,10} \diagnosis[’’ can be matched

against the following strings ‘‘without \diagnosis[’’, ‘‘without any \diagnosis[’’,

‘‘without serious \diagnosis[’’, etc.

Regular expressions are used by many text editors and utilities to search and manipulate

bodies of text based on certain patterns. Many programming languages support regular

expressions for string manipulation. For example, Perl and Tcl have a powerful regular

expression engine built directly into their syntax. In our work we use the Java regular

expression implementation (package java.util.regex).

The bag-of-words and n-gram representations are actually a special case of the regular

expression representation proposed in this work. A regular expression feature such as

‘‘.{0,500} started .{0,500}’’ is actually equivalent to the word feature started in the bag-of-

words representation. The regular expression feature ‘‘.{0,500} ruled in .{0,500}’’ matches

the bigram representation of the two words phrase ruled in. An additional benefit of our

proposed regular expressions compared to bag-of-words is in handling compound sen-

tences that include both positive and negative findings, a limitation noted by Averbuch

et al. (2004). For example, the sentence: ‘‘upon admission showed no \diagnosis_1[but
did show extensive \diagnosis_2[and \diagnosis_3[but there were no masses noted’’.

The bag-of-words representation of such sentences is problematic since the same features

apply to both negative and positive contexts and the algorithm cannot learn to distinguish

between them. The regular expressions representation can represent such structural fea-

tures using the distance and presence of additional diagnosis.

2.1.4 Part-of-speech tagging

Part-of-speech tagging refers to labeling words in a text as corresponding to a particular

part of speech based on both its definition, as well as its context—i.e., relationship with

adjacent and related words in the text. POS tagging is hard mainly because some words

may have multiple part of speech tags and the correct tag depends on the context. POS tags

indicate the basic syntactic function of that token, such as noun or verb, as well as other

grammatical information, such as number and tense. POS tagging is a fundamental pre-

processing step for many other Natural Language Processing (NLP) applications (e.g.,

syntactic parsing). Typically, POS tags provide general shallow syntactic information to

these downstream applications (Cohn 2007).

Machine learning methods have been shown to be more effective in solving POS

tagging than classic NLP methods (Halteren et al. 2001). POS tagging is closely related to

our problem. In fact, the negation detection problem can be regarded as a special case of

POS tagging—we define a polarity tag (possible values are negative and positive) that is

applicable to the \diagnosis[terms only. The following sections present sequences

labeling frameworks that have been successfully used for POS tagging.

Inf Retrieval (2008) 11:499–538 503

123

2.2 Frameworks for information extraction

The research field of IE is related to this work since some of the algorithms developed for

IE can also be applied to detection of negative context. A common IE task is to auto-

matically extract entities and relationships from semi-structured or free text. For example,

in the medical domain, an IE task is to automatically populate a structured database from a

discharge summary report.

Many works in IE propose learning approaches that automatically process free text and

overcome the knowledge engineering bottleneck. Califf and Mooney (1999) proposed the

RAPIER system that induces pattern-match rules from rigidly structured text. Freitag

(1998) described the SRV framework that exploits linguistic syntax and lexical information

for corpus based learning while Soderland (1999) proposed the WHISK system for

learning text extraction rules automatically. The (LP)2 algorithm described in Ciravegna

(2001) learns tagging rules from an annotated corpus. Kushmerick et al. (1997) and Muslea

et al. (2001) proposed wrapper induction procedure for extracting structured information

from database-like Web pages. These works have shown that wrappers can be automati-

cally learned for many kinds of highly regular documents, such as Web pages. Another

algorithm that uses wrapper induction for IE is the boosted wrapper induction (BWI)

proposed by Freitag and Kushmerick (2000).

All the above works focus on extracting entities and relationships. There is no emphasis

on special contexts, such as negation that might totally divert the meaning of the text.

Apparently such cases are rare in the corpora used for evaluating the above works (which is

not true when dealing with discharge reports where more than 50% of the findings might

actually be negated). More recent IE works are focused on HMM based techniques.

2.3 Frameworks for labeling sequential data

The HMM is a common machine learning technique with published applications in

sequential pattern recognition tasks. The HMMs were successfully applied to related

problems such as: IE (Seymore et al. 1999); POS tagging (Kupiec 1992; Smith et al.

2004) and many more. Specifically, HMM was successfully applied to POS tagging of

bio-medical texts, For example, Smith et al. (2004) trained the MedPost HMM POS

tagger and achieved a 97.43% accuracy on the MEDLINE corpus. In their HMM

implementation, each POS tag corresponds to a state in the model, and transition

probabilities are estimated from tag frequencies in the training set. Another HMM

implementation of POS tagging applied to the MedPost data repository is the LingPipe

implementation (LingPipe 2007).

We have not found any work that implements HMM to detect negation in free text.

Nevertheless, we can utilize HMM POS taggers for solving the negation problem.

Applying a HMM POS tagger to the negation detection problem is not a trivial task since

there are many possible approaches for structuring the HMM. Figure 2 below illustrates a

simple three-state HMM-based POS tagger. The hidden states are the POS tags (e.g. noun,

verb, adjective, etc.) and the arrows represent the possible transitions between states.

Freitag and Kushmerick (2000) demonstrate that when applying HMM for IE, extraction

accuracy strongly depends on the selection of the HMM structure.

Conditional random fields are a newer framework for labeling sequential data (Lafferty

et al. 2001). The CRFs define a conditional probability over label sequences given a certain

observation sequence. This relaxes the unwarranted independence assumptions about the

sequences which HMMs make. Like HMMs, CRFs have been successfully used for POS.

504 Inf Retrieval (2008) 11:499–538

123

A comparative study showed that CRFs outperform HMMs in this application (Lafferty

et al. 2001).

2.4 Sentiment analysis

The problem of sentiment analysis is similar to negation recognition. Most work in sen-

timent analysis classifies documents by their overall sentiment, e.g. determining whether a

review is positive or negative (Turney 2002) while some perform phrase-level sentiment

analysis, e.g. Wilson et al. (2005). The works on phrase-level sentiment analysis are closer

to our work than the works that classify whole documents.

Many of these recent works apply NLP techniques to sentiment analysis. Most are based

on machine learning approaches similar to ours. Kim and Hovey (2004) achieved 81%

percent accuracy in identifying positive, negative, or neutral sentiments given free-texts.

Their approach is based on ‘‘sentiment-bearing words’’ such as: agree, disagree, etc. The

lists of seed words are prepared by hand and expanded with words obtained from WordNet.

Esuli and Sebastiani (2005) achieved up to 85.4% accuracy when suggesting a novel

method that exploits online glossaries in addition to WordNet.

These approaches are different from our work since they rely on seeded words and

glossaries for expanding these words. Our approach does not depend of such supervised

guidance, the negation terms our automatically detected.

2.5 Identifying negative context in non-domain specific text (general NLP)

Negation is an active linguistic research topic dating 2500 years back with the legacy of

Aristotle with ongoing publications, conferences, and workshops (Horn 2001). Negation is

considered difficult in NLP due to the overwhelming complexity of the form and the

function of sentences with negation. Negation is one of the constants of classical logic and

has complex and systematic interaction with the other logical operators, especially quan-

tifiers and modals.

In English grammar, negation is the process that turns a positive statement (‘‘the patient
has \diagnosis[’’) into its opposite denial (‘‘the patient does not have \diagnosis[’’).

Nouns as well as verbs can be negated with a negative adjective (‘‘There is no \diag-
nosis[’’); a negative pronoun (no one, nobody, neither, none, nothing); or a negative

adverb (‘‘he never was \diagnosis[’’). It is easy to identify specific negation words such

as: not, neither, and never, as well as for Not-negation, e.g., not, n’t, and No-negation.

However, in many cases, these specific words are not presented, e.g., deny, fail, and lack.

Words in this second category are called inherent negatives (Tottie 1991), i.e., they have a

negative meaning but a positive form. An additional morphological form of negation is the

Tag 1

Start End

Tag 3

Tag 2

Fig. 2 Sample three-states
HMM based POS tagger

Inf Retrieval (2008) 11:499–538 505

123

affixal negation. Prefix negations un- and in-, may create negation words unhappy, unwise,

and unfit. Negations can also be created with suffixes such as -less, e.g., lifeless. Another

complexity arises from double negation, e.g. the sentence ‘‘it is not unlikely’’. The neg-

raising phenomenon adds additional complexity, e.g. sentences such as: ‘‘I don’t believe he
is ill’’ or ‘‘I don’t think he is ill’’.

We could not locate any NLP research on identifying negated concepts in specific non-

domain areas. However, some NLP techniques such as syntactic and semantic processing

can be applied to a negation identification framework, especially part of speech tagging

and shallow parsing. These features can be combined into a machine learning classification

scheme for negation identification. The effectiveness of such NLP techniques very much

depends on the quality of the text, particularly its compliance with grammatical rules. The

language used in medical narratives, however, is often grammatically ill-formed. For

example, the positive finding cough in the sentence ‘‘the patient reported she was not
feeling well due to mild cough’’. Thus NLP techniques that rely on grammatical sentences

may not be sufficient for identification of negation in medical narratives. Similar obser-

vation was noted by other researchers, for example, Java (2007) writes that the complex

linguistic structures found in Web blogs require to rely on semantics rather than shallow

NLP.

2.6 Identifying negative context in medical narratives

Researchers in medical informatics have suggested methods for automatically extracting

information contained in narrative reports for decision support (Fiszman et al. 2000),

guideline implementation (Fiszman and Haug 2000), and detection and management of

epidemics (Hripcsak et al. 1999). Some of the researches concentrate on methods for

improving information retrieval from narrative reports (see, for instance, Hersh and Hic-

kam 1995; Nadkarni 2000; Rokach et al. 2004). A number of investigators have tried to

cope with the problem of a negative context, see definition in Sect. 1. These works can be

classified into two research domain categories, which are presented in the following two

sections.

2.6.1 Works based on Knowledge engineering

The knowledge engineering approach is based on human expert writing rules or patterns.

These rules and patterns are designed to capture syntactic and semantic features of the free

text. The methods used are mostly from the NLP research field utilizing also deep parsing

technologies and sometimes rule engines. These methods are complex and very expensive

to develop and maintain, useful mostly when the target text is written according to proper

language rules. Examples of knowledge engineering based works are: Friedman et al.

(1994), Aronow et al. (1999), Leroy et al. (2003), Mutalik et al. (2001), and Chapman

et al. (2001). These works are described in the following paragraphs.

Friedman et al. (1994) developed MedLEE that performs sophisticated concept

extraction in the radiology domain. The MedLEE system combines a syntactic parser with

a semantic model of the domain. It recognizes negatives which are followed by words or

phrases representing specific semantic classes such as degree of certainty, temporal change

or a clinical finding. It also identifies patterns where only the following verb is negated and

not a semantic class (i.e., ‘‘X is not increased’’). This method yields is highly accurate. The

shortcomings are that it is rigid, not easily adaptable to additional domains and expensive

to develop and maintain.

506 Inf Retrieval (2008) 11:499–538

123

Aronow et al. (1999) developed the NegExpander which uses syntactic methods to

identify negation in order to classify radiology (mammography) reports. While NegEx-

pander is simple in that it recognizes a limited set of negating phrases, it does carry out

expansion of concept-lists negated by a single negating phrase.

Leroy et al. (2003) developed and evaluated a shallow parser that captures the relations

between noun phrases automatically from free text. It uses heuristics and a noun phraser to

capture entities of interest in the text. Cascaded finite state automata are capable of

structuring the relations between individual entities. The automata are based on closed-

class English words and model generic relations not limited to specific words. The parser

also recognizes coordinating conjunctions and captures negation in text, a feature usually

ignored by others.

Mutalik et al. (2001) used a lexical scanner with regular expressions and a parser that

uses a restricted context-free grammar to identify pertinent negatives in discharge sum-

maries and surgical notes. Their Negfinder system first identifies propositions or concepts

and then determines whether the concepts are negated. The set of regular expressions is

predefined by IT professionals based on input obtained from medically trained observers.

Their strategy yields over 95% accuracy in classifying negative medical concepts. Muta-

lik’s algorithm is quite complex and requires other utilities such as Lex and Yacc. The tools

required by Mutalik’s algorithm are easily attainable. However, implementing their system

in a preexisting indexing tool would be less straightforward.

One of the most extensive studies on negation to date is in the work of Chapman et al.

(2001). They developed a simple regular expression algorithm called NegEx that imple-

ments several phrases indicating negation, filters out sentences containing phrases that

falsely appear to be negation phrases, and limits the scope of the negation phrases. Their

algorithm uses a predefined set of pseudo negation phrases, a set of negation phrases, and

two simple regular expressions. They use a lexical scanner with regular expressions and a

parser that uses a restricted context-free grammar to identify pertinent negatives in dis-

charge summaries and surgical notes. Their system first identifies propositions or concepts

and then determines whether the concepts are negated. Their system performed with a

sensitivity of 95.7% and a Recall of 91.8% and is fine tuned with rules that apply to

particular negation phrases and syntactic structures.

2.6.2 Works based on machine learning

Many of the recent works in the field of text classification are based on the machine

learning approach. The work of Averbuch et al. (2003) is an example of detecting negated

concepts in medical narratives using machine-learning techniques. In the methodology that

Averbuch developed for automated learning of a negative context profile in medical

narratives, the profile contains only ten words and/or phrases such as: ‘‘negative for’’; ‘‘had
no’’; ‘‘was no’’; etc. It has been shown that this algorithm is superior to traditional clas-

sification algorithms that are based on ‘‘bag-of-words’’ representation. Machine learning

has proven effective for text classification. The advantages are that such methods are much

faster to develop than Knowledge engineering. In addition they are more effective when

the text is not written according to proper grammar rules.

Goldin and Chapman (2003) describe an extension of NegEx using machine learning

algorithms and demonstrate that machine learning techniques (including decision trees)

enhances the performance of their NegEx classifier. They summarize the findings of

their study into a simple rule: ‘‘When negation of a UMLS term is triggered with the

Inf Retrieval (2008) 11:499–538 507

123

negation phrase ‘not,’ if the term is preceded by ‘the’, then do not negate’’. How-

ever, this conclusion is based on manual interpretation of the experimental results.

There is no research that tries to learn syntactically rich negation patterns automatically

and then uses the discovered patterns to classify medical concepts that appears in

unseen text.

Based on the above assumptions, the purpose of this work is to develop a methodology

for learning negative context patterns in medical narratives and measure the effect of

context identification on the performance of medical information retrieval. While the

knowledge engineering approach showed that regular expressions are very effective in

identifying negative context, there is no research that tries to automatically learn these

expressions from medical narrative reports. Thus the aim of this work is to examine the

ability to automatically learn regular expressions from medical narrative report. Moreover,

usually all automatic discovery methods used in fields other than medical informatics

provides an ordered list of regular expressions. Thus when a new sentence is needed to be

examined, this sentence is matched against the list of regular expressions. The outcome of

the first positively matched regular expression is then used. In this research we suggest to

learn a hierarchical structure. As we will see later this hierarchical structure has important

features.

3 The proposed methodology

The methodology we develop enables an effective process of learning useful regular

expressions from the training corpus. Section 3.1 below explains the complete process of

training a regular expression based classifier from an input of training and test corpora.

Sections 3.2–3.5 specify in detail each of the steps. Finally, Sect. 3.6 suggests the concept

of cascading several classifiers for improving the performance.

3.1 The process overview

We suggest the following process of training a classifier to predict negation concept using

regular expressions patterns. The process includes four steps (see Fig. 3).

1. Corpus preparation: A domain-specific task designed to normalize, generalize and

tag the free text so that it can be further processed.

2. Regular expression patterns learning: The automatic creation of a regular

expression patterns from the training set.

3. Patterns selection: Applying heuristics and features selection techniques to select the

best patterns for correct classification of the concept.

4. Classifier training: Training a decision tree classifier.

Fig. 3 The process overview

508 Inf Retrieval (2008) 11:499–538

123

The following sections describe each of the above steps.

3.2 Step 1: corpus preparation

The objective of the corpus preparation phase is to transform the input discharge sum-

maries data into a usable corpus for the training and test phases. Figure 4 presents the

corpus preparation sub-steps. The following sections describe each sub-step.

3.2.1 Step 1.1: tagging

In the first step, we parse all the discharge summaries. All known medical terms are tagged

using a tagging procedure presented in our previous work Rokach et al. (2004). Consider

for example the following text:

This is a 66 year old woman status coronary artery bypass graft in 1989-06-23

with coronary artery disease, hypertension, diabetes mellitus, kidney stones.

We use the UMLS meta-thesaurus, for tagging the sentence, i.e. replacing medical terms

with their concept type. For example, when the parser reaches the term coronary it queries

the UMLS for terms starting with ‘‘coronary*’’. The result set includes several terms

starting with coronary. The parser then uses a sliding window in order to match the longest

possible UMLS term to the given sentence. The UMLS terms relevant for the above

sentence are listed in Table 1.

Since we are only interested in the generalized form of the sentence (the specific

diagnosis or procedure does not matter), the output text following the tagging process takes

the following form:

This is a 66 year old woman status <Procedure_1> in 1989-06-23 with <Diag-

nosis_1>, <Diagnosis_2>, <Diagnosis_3>, <Diagnosis_4>, <Diagnosis_5>.

We are using a simple algorithm for tagging medical phrases in the text based on the

UMLS meta-thesaurus. The main idea of this tagger is to efficiently find the longest string

Fig. 4 Corpus preparation

Inf Retrieval (2008) 11:499–538 509

123

in the UMLS that a match the given text. This tagger has no capability to resolve ambi-

guities. Thus if the same string represents two different tags then one of them is arbitrarily

selected. These potential errors will be manually corrected during the labeling step.

Figure 5 describes the pseudo-code of the tagger. As the meta-thesaurus is stored in a

database table, and this table contains many entries, it will be desirable that the number of

queries will be minimized as much as possible. In order to achieve this goal the following

measures have been added:

• Stopword—Any word which appears in the Stopwords table (such as ‘‘the’’, ‘‘in’’) will

not be searched for. The Stopwords is based on a fixed size hash table. This table is

updatable (see below) based on LRU strategy. Nevertheless several basic words can be

permanent members of this table and cannot be removed.

• In order to improve database querying performance an attribute that contains the first

word and an attribute the represents the phrase length (in characters) have been added

to the concept table.

• A caching mechanism is used in order to avoid querying the database with the same

query in adjacent times. Each entry in this cache represents a list of phrases beginning

with the same token sorted by phrase length. This cache is managed as LRU hash table,

where the first token is used as the key and the list of phrases is used as the stored item.

Table 1 Tagging using the UMLS

ID Term Type CUI (concept unique identifier)

1 Coronary artery bypass graft Procedure 10010055

2 Coronary artery disease Diagnosis 10010054

3 Hypertension Diagnosis 10020538

4 Diabetes mellitus Diagnosis 10011849

5 Kidney stones Diagnosis 10022650

INPUT: O – Original Text
OUTPUT: T – Tagged text
Do
 T O /* Create a copy of the original text to be manipulated */

t <- Next Token in T

 If t ∉STOPWORD then

 List<-∅
 If t ∈ CACHE
 List<-CACHE(t)
 Else
 List <- Select all phrases in UMLS
 with first token=t order by length (descending)

 If List=∅ then
 Add t to STOPWORD using LRU strategy.
 Else
 Add List to CACHE using LRU strategy.
 End
 End
 For each phrase p in List i

 If current position in T contains p then i

 Replace the p in T with a tag. i

 Promote the position in T accordanly.
 Exit For

 End If
 End For

End If
Until no more tokens
Retrun RESULT

Fig. 5 Pseudo-code for simple tagger

510 Inf Retrieval (2008) 11:499–538

123

3.2.2 Step 1.2: sentence boundaries

Physicians are trained to convey the salient features of a case concisely and unambiguously

as the cost of miscommunication can be very high. Thus it is assumed that negations in

dictated medical narrative are unlikely to cross sentence boundaries, and are also likely to

be simple in structure (Mutalik et al. 2001).

An additional processing step includes breaking discharge summaries documents into

sentences using a sentence boundary identifier as suggested by Averbuch et al. (2003). The

sentence boundary is identified by searching for terminating signs such as {‘‘.’’, ‘‘?’’, ‘‘!’’}.

This approach is not sufficient since periods and other signs are frequently appear inside

sentences (for instance: ‘‘Patient was discharged on Lopressor 25 milligrams p.o. b.i.d’’.1

We detect such exceptions using regular expressions (an expression that describes a set of

strings) to exclude expressions that might mistakenly be considered end of sentence

(Table 2).

3.2.3 Step 1.3: manual labeling

This step refers to the creation of the training corpus. Two physicians reviewed each

document and labeled each medical term indicating whether it appears in positive or

negative context. If the physicians have noticed that the medical term has been wrongly

tagged during Step 1.1, they have first selected the correct tag and then indicated if it

appears in positive or negative context.

Since most sentences include more than one diagnosis, it is necessary to label each of

them during the manual labeling process. Consider for instance the compound sentence:

‘‘She denied shortness of breath, but did have fever’’. In this case ‘‘shortness of breath’’ is

negative while ‘‘fever’’ is positive. Thus, this sentence will be represented in the dataset as

two different instances—one for each diagnosis term. Each instance has one label (positive

or negative). Since each instance has one label (positive or negative), each has exactly one

anchor diagnosis term to which the label refers. This anchor term is tagged as ‘‘\DIAG-

NOSIS[’’ while any other diagnosis terms in the sentence will be denoted as ‘‘\DIAG[’’.

The above procedure is demonstrated in Fig. 6. By doing so, we will be able to obtain

different patterns from the same sentence. For instance in this example, the pattern ‘‘.*
denied\DIAGNOSIS[.*’’ can be learned for identifying negative context, and the pattern

‘‘.* denied \DIAG[but .* \DIAGNOSIS[’’ can be learned for identifying positive

context.

3.3 Step 2: patterns creation

Instead of using a single regular expression representation for the entire sentence, we use

two regular expressions: one for the string that precedes the targeted medical term (the

1 From Latin: oral administration two times daily.

Table 2 Regular expressions to exclude sentence end

(b|t|q)\.i\.d\.? p\.o\.? \.([0–9]+) cc\.

p\.r\.n q\.d\.? \. of \., and

q\.h\.s mg\. (Dr\.)(\s?)(\w+) \sq\.

Inf Retrieval (2008) 11:499–538 511

123

seed) and one for the string that follows it. This split may help to resolve some of the

problems that arise in compound sentences that include both positive and negative contexts

in the same sentence. Recall the example ‘‘The patient states she had fever, but denies any
chest pain or shortness of breath’’. In this case the appearance of the verb ‘‘denies’’ after

the term ‘‘fever’’ indicates that the term ‘‘fever’’ is left in positive context. The appropriate

regular expression will be in this case as follows: ‘‘.{0,200}denies any.{0,200} \DIAG-
NOSIS[’’, where the distance 200 is arbitrary determined per the expected sentence length

in the domain.

To learn regular expressions, we have adapted two different algorithms to our task and

compared them against each other. The first algorithm, LCS, is commonly used to compare

characters in two text files. The second algorithm, Teiresias, was designed for discovering

motifs in biological sequences. We describe how we adapted these algorithms to the task of

learning regular expressions for negation patterns below.

3.3.1 Learning regular expression patterns using longest common
subsequence algorithm

The basis for discovering a regular expression is a method that compares two texts with the

same context and incorporates the same concept types (i.e., diagnosis, medication, pro-

cedure, etc.). By employing the LCS algorithm (Myers and An 1986) on each part of the

sentence (before the targeted term and after the targeted term) a regular expression that fits

these two sentences is created. The LCS employs a brute force policy: given a sequence X,

determine all possible subsequences of X, and check to see if each subsequence was a

subsequence of Y, keeping track of the longest subsequence found. For instance assume we

are given the following two sentences:

We execute LCS algorithm on the two normalized sentences as presented in Table 3.

Fig. 6 Handling sentences with multiple seeds

512 Inf Retrieval (2008) 11:499–538

123

Note that the LCS algorithm was revised to compare tokens as opposed to comparing

characters in its classical implementation. It should also be noted that whenever there was

only insertion (or only deletion) we added a wild card string with a minimum length of 0

and a maximum length of the inserted string (including the leading and trailing spaces). On

the other hand, whenever there was simultaneously insertion and deletion, we added a wild

card string with the minimum length of the shortest string and maximum length of the

largest string (without leading and trailing spaces because they are part of the common

substring).

As a result of running the LCS algorithm we obtain the following pattern. This pattern

can now be used to classify concept of type medication appearing in positive contexts.

3.3.2 Learning regular expression patterns using Teiresias algorithm

The Teiresias algorithm was designed to discover motifs in biological sequences, an

important research problem (Rigoutsos and Floratos 1998). The method is combinatorial in

nature and able to produce all patterns that appear in at least a (user-defined) minimum

number of sequences, yet it manages to be very efficient by avoiding the enumeration of

the entire pattern space. Furthermore, the reported patterns are maximal: any reported

pattern cannot be made more specific and still keep on appearing at the exact same

positions within the input sequences.

Teiresias searches for patterns which satisfy certain density constraints, limiting the

number of wild-cards occurring in any stretch of pattern. More specifically, Teiresias looks

for maximal\L, W[patterns with the support of at least K (i.e., in the corpus there are at

least K distinct sequences that match this pattern). A pattern P is called\L, W[pattern if

every sub pattern of P with length of at least W words (combination of specific words and

‘‘.’’ wild-cards) contains at least L specific words.

For example, given the following corpus of six negative sentences:

Table 3 Longest common subsequence generation

Sentence 1 Sentence 2 Pattern

The patient was The patient was The patient was

therefore admitted to the hospital .{24,35}

ruled in for \DIAG[
and started and started and started

on .{0,4}

\MEDICINE[\MEDICINE[\MEDICINE[
as treatments .{0,15}

for \DIAGNOSIS[for \DIAGNOSIS[for \DIAGNOSIS[

Inf Retrieval (2008) 11:499–538 513

123

The Teiresias program (L = K = 2, W = 5) discovers six recurring patterns shown in

the following file:

The first two columns represent the support of the pattern. The dot represents a missing

word. Note that the program yields also patterns that do not include the\diagnosis[seed.

These patterns are not useful for our purpose and are filtered out. Next we transform the

Teiresias patterns to regular expression patterns by replacing each dot (missing word) with

a regular expression such as .{0,L}, where L is calculated by counting the number of dots

and multiplying by the average word length (8 characters as per our corpus).

The resulting regular expression patterns are presented in the following example:

For discovering the regular expressions, we compared the LCS algorithm to the Te-

iresias algorithm. The usage of Teiresias for creating regular expressions patterns requires

the setting of the following parameters: (1) The minimum number of words in a pattern (set

to 2); (2) the maximum extent of a pattern (set to 100 words); and (3) The minimum

allowed support for a pattern (set to 10).

514 Inf Retrieval (2008) 11:499–538

123

3.4 Step 3: patterns selection

Obviously there are many patterns that can be created via the LCS (each pair of sentences

with the same concept type and context). In fact, initially too many patterns are created and

it is essential to keep a manageable number of patterns. For example, a training set of 140

negative sentences and 140 positive sentences yielded 2*(140*139/2) = 19,460 patterns.

3.4.1 Heuristics for pattern selection

Many of the generated patterns differ only in the distance of important keywords from the

seed concept. We start by rounding the distances in the regular expression patterns. For

example, the pattern ‘‘had no.{12,27} \diagnosis[’’ is replaced with the pattern patterns

‘‘had no.{10,40} \diagnosis[’’. As a result, patterns such as ‘‘had no.{12,27} \diagno-
sis[’’ and ‘‘had no.{17,32} \diagnosis[’’ are replaced with the pattern ‘‘had no.{10,40}
\diagnosis[’’. Trivial patterns such as ‘‘a.{70,100} \diagnosis[’’ are omitted. For

example from the original 19,460 patterns, 17,235 were identified as redundant and trivial

patterns. After eliminating these patterns, only 2,225 patterns are remained.

3.4.2 Correlation-based feature selection

Feature selection is the process of identifying relevant features in the dataset and dis-

carding everything else as irrelevant and redundant. For this purpose each ‘‘regular

expression’’ pattern represents a different feature.

In this work we use a non-ranker filter feature selection algorithm. Filtering means that

the selection is performed independently of any learning algorithm. Non-ranker means that

the algorithm does not score each pattern but only indicates which pattern is relevant and

which is not. Figure 7 below describes the training set matrix before features selection. The

rows are training sentences (negative and positive), the first K columns are the regular

expression patterns; and the last column is the target class (negative/positive). The cell

value is 1 if the regular expression matches the sentence, otherwise it is 0. The matrix

described above is the input to the features selection algorithm.

In this work we use the Correlation-based Feature Subset Selection (CFS) as a subset

evaluator (Hall 1999). Rather than ranking individual regular expression, CFS ranks the

worth of subsets of regular expressions by considering the individual predictive ability of

each expression along with the degree of redundancy among them. Subsets of expres-

sions that are highly correlated with the context while having low inter-correlation are

preferred.

The CFS first calculates a matrix of expression–context and expression–expression

correlations from the training data. Expression–context correlation indicates how much an

expression is correlated to a specific context while expression–expression correlation is the

correlation between two expressions. CFS then calculates the merit of an expression subset

consisting of K expressions:

Merits ¼
Krcf

ffi

K þ KðK � 1Þrff

p

where Merits is the merits of the expression subset, rcf is the average of the correlations

between the expression and the context and rff is the average expression–expression

correlation.

Inf Retrieval (2008) 11:499–538 515

123

As the search space is huge (2K), CFS starts from the empty set of regular expressions

and uses the best-first-search heuristic with a stopping criterion of five consecutive fully

expanded non-improving subsets.

The CFS algorithm is suitable to this case, because there are many correlated patterns

(for instance, when one pattern generalizes another pattern). For example the 2,225

remaining patterns create a dataset of 280 instances with 2,225 input binary attributes (0 if

the pattern does not match the sentence; 1 if pattern matches sentence) and target attribute

that represent the concept classification (‘‘Positive’’ or ‘‘Negative). By applying the CFS

algorithm on the training set presented in Fig. 7 the number of patterns is reduced from

2,225 to 35.

3.5 Step 4: classifier training

The filtered matrix, together with the manual classification of each concept, is fed into a

decision tree induction algorithm which creates a classification decision tree. The J48

algorithm is used as the base induction algorithm for growing a decision tree. J48 is a java

version of the well-known C4.5 algorithm (Quinlan 1993).

An illustrative example of decision tree generated is presented in Fig. 8. It describes a

classification decision path where pattern ‘‘.{0,200}have.{0,50} \diagnosis[’’, learned

from positive examples, indicates a positive context with probability P5 in case the sen-

tence does not match the three (negative) patterns: ‘‘.{0,200}without.{0,10}\diagnosis[’’;

‘‘.{0,200}rule out.{0,10} \diagnosis[’’; ‘‘.{0,200}had no.{0,10} \diagnosis[’’ (with

probabilities P1, P2, and P3 for negative) but matches the negative pattern

‘‘.{0,200}no.{0,50}\diagnosis[’’. Here we denote ‘‘negative pattern’’ as a pattern learned

from negative context examples. This demonstrates the power of decision based on

matching a sentence with multiple regular expressions.

3.6 Cascade of three classifiers

3.6.1 Overview

It is well known that the classification accuracy of a single decision tree can be signifi-

cantly improved by growing an ensemble of trees and letting them vote for the most

popular class. Analyzing the problem domain, we brought up the hypothesis that it is

possible to create a more powerful ensemble structure than the structure obtained from

such general purpose ensembles method as Adaboost (Freund and Schapire 1996). Spe-

cifically, we noticed that: (1) training set size is a limiting issue due to the computational

complexity of the machine learning algorithms used; (2) in the corpus, there are simple

Pattern 1 Pattern 2 Pattern 3 … Pattern K Context
Sentence 1 1 1 0 … 1 Positive
Sentence 2 1 0 1 … 0 Positive
Sentence 3 1 1 0 … 1 Positive

Sentence M 1 0 1 0 1 Positive
Sentence M+1 0 1 0 … 1 Negative
Sentence M+2 1 1 1 … 0 …

Sentence N 0 0 1 … 0 …

Fig. 7 Training set matrix before features selection

516 Inf Retrieval (2008) 11:499–538

123

sentences versus compound sentences or instructions; (3) Some of the patterns yield very

high Precision. This is obvious since for some of the negation terms attached (anchored) to

the seed, mean that the seed is negated. For example, in a sentence such as, ‘‘... denied
nausea ...’’ the nausea is negated with near 100% probability. Thus, it makes sense to train

a simple classifier using only such (anchored) patterns, using it to identify the simple

instances with very high Precision. Then, only instances not classified as negative by the

first cascade are used to train a second classifier.

These observations triggered the idea of constructing a cascade of classifiers. The idea is

to build a cascade of classifiers as shown in Fig. 9. The selection of tree cascades is due to

the problem characteristics: the first cascade consists of anchored patterns; the second

cascade consists of negative patterns (learned from negative sentences) and the third

cascade classifier also includes positive patterns.

Figure 9 demonstrates the cascaded classifier training strategy. The first cascade

includes only anchored patterns, ensuring high Precision (very few positive sentences will

be classified as negative). Anchored patterns are patterns where the word is anchored (no

separating words) to the seed. For example, the following anchored patterns form the first

cascade classifier:

• no \diagnosis[
• denied \diagnosis[
• denies \diagnosis[
• not \diagnosis[
• negative for \diagnosis[
• without \diagnosis[
• ruled out \diagnosis[

.{0,200}no.{0,50}<diagnosis> .{0,200}have.{0,50}<diagnosis>
Match

Match No Match

Positive w/p P4 Positive w/p P5

Negative w/p P6

.{0,200}had no.{0,50}<diagnosis> Match
Negative w/p P3

.{0,200}rule out.{0,50}<diagnosis> Match
Negative w/p P2

.{0,200}without.{0,50}<diagnosis> Match
Negative w/p P1

No Match

No Match

No Match

No Match

Fig. 8 Example decision tree

Inf Retrieval (2008) 11:499–538 517

123

The training set of negated instances for the second cascade comprises negation patterns

that failed to classify as negative by the first cascade ‘‘Trained classifier 1’’. The training

set of positive instances for the first cascade is used as is in the second cascade. Figure 10

illustrates a schematic description of the second cascade classifier.

Cascaded classifier training
C

as
ca

de
 2

C
as

ca
de

 3
C

as
ca

de
 1

Negative
Corpus

Positive
Corpus

Classifier
Training

Trained
Classifier

1

Classify

Errors

Errors
Negative
Corpus

Errors

Trained
Classifier

2

Classifier
Training

Errors
Negative
Corpus

Classifier
Training

Trained
Classifier

3

Fig. 9 Cascaded classifier training

Fig. 10 Second cascade

518 Inf Retrieval (2008) 11:499–538

123

In the third cascade, we learn patterns from the negative and positive corpora, taking

only negative instances which failed to classify as negative by the first and second cas-

cades. As can be seen in Fig. 11, the third cascade classifier includes also positive patterns

(patterns learned from the positive corpus). In that sense, these patterns are different from

the previous works that rely only on negation patterns.

Figure 12 demonstrates how the cascaded classifiers perform the classification of three

unseen sentences. The first sentence ‘‘the patient denied \diagnosis[’’ is matched by an

anchored pattern ‘‘denied \diagnosis[’’ and is classified negative by ‘‘Trained classifier

1’’. The second sentence ‘‘the patient did not experience recent \diagnosis[’’ does not

match with any of the ‘‘Trained classifier 1’’ anchored patterns, therefore it is fed into

‘‘Trained classifier 2’’ for further classification as negative due to the patterns comprising

‘‘Trained classifier 2’’. The third sentence is classified as negative by the ‘‘Trained clas-

sifier 3’’. The last sentence is not classified as negative by all three cascades and is

therefore classified as positive.

4 Experimental study

4.1 Experimental setup

We study the potential of the proposed methods in real word datasets. The main training

corpus is a set of 1,766 instances parsed from de-identified discharge summaries that

were obtained from Mount Sinai Hospital in New York. A shorter version of this corpus

was used in our previous work (Rokach et al. 2004). Recall from Fig. 6 that the same

sentence can be the source for several instances (if there are several diagnoses in the

same sentence).

Experimental evaluation is performed using tenfold cross-validation, the dataset is

repeatedly split into training and testing sets so that the statistical significance of the

difference between classifiers can be analyzed. The cross validation split was performed

on the report level and not on the instance level because different physicians might use

different language; If instead the cross validation split was performed on the instance

Fig. 11 Third cascade

Inf Retrieval (2008) 11:499–538 519

123

level the predictive power could be higher than should be expected. The last argument is

true, because instance level splitting can generate validation sets which contain instances

obtained from the same report that have been used to create the corresponded training

set.

Two physicians were asked to label each diagnostic term to either ‘‘positive’’ or

‘‘negative’’. Using Kappa statistics we measured the labeling agreement of the two phy-

sicians and concluded that there is almost perfect agreement (Kappa coefficient = 0.968).

The few disagreements have been resolved by presenting the cases to a third physician who

served as an arbitrator.

The variety of document sources enables us to measure and compare the sensitivity of

the classification methods to the text origin. We performed several experiments in order to

determine the classifier sensitivity to the following parameters: (a) Different training set

sizes; (b) the effect of using feature selection; and (c) the effect of using ensemble of

decision trees. We examined here in what extent it can improve the results and whether the

new cascading ensemble is more powerful than existing general purpose ensemble methods

by investigating (d) the difference between using LCS and Teiresias; (e) the sensitivity to

Trained
Classifier

2

Trained
Classifier

2

Trained
Classifier

1

1. The patient denied <diagnosis>

2. The patient did not experience
recent <diagnosis>

3. The patient was given
instructions to call in case of
<diagnosis>

Negative

Negative

Negative

4. She experienced <diagnosis> Classifies Sentence 1 as
negative, all other
sentences are passed to
the next classifier

Classifies Sentence 2 as
negative, Sentences 3 and
4 are passed on.

Classifies Sentence 3 as
negative, Sentence 4 as
positive.

Fig. 12 Cascade classifier classification examples

520 Inf Retrieval (2008) 11:499–538

123

diagnosis type; (e) the sensitivity to different data sources and documents types (such as

operation reports, outpatient, etc.).

In order to examine the predictive power of the examined methods, we will use the

following four measures: Negative Predictive Value, Recall, F-Measure and Accuracy.

Note that all other measures presented in Sect. 2.5 can be restored from these four

measures.2

4.1.1 Compared algorithms

Our algorithm has been implemented using the WEKA framework (Witten and Frank

2005). We compared our cascade classifiers to general-purpose ensemble of decision trees.

For creating the general-purpose ensemble of decision trees we used the AdaBoost algo-

rithm (Freund and Schapire 1996) with 10 iterations (as explained in Sect. 4.2.5).

AdaBoost was also used to create an ensemble of seventy decision stumps.

The NegEx classifier (Chapman et al. 2001) was manually built using knowledge

engineering methods in order to specifically resolve negations in medical narrative reports.

The NegEx is a fixed classifier and has no learning capabilities. We compared our

approach to NegEx in order to examine if an automatic learning method can achieve an

equivalent performance.

Our algorithm was compared also to the HMM technique. Our HMM implementation

approach is based on the observation that the negation detection problem can be regarded

as a special case of part of speech tagging. We define a polarity tag (possible values are

Negative and Positive) that is applicable to the \diagnosis[terms only. Our HMM

implementation for the negation detection problem is based on the LingPipe/MedPost

implementation. The LingPipe implementation accepts a file of tagged sentences as input.

An example tagged sentence is: ‘‘The_DD N-terminal_JJ region_NN had_VHD high_JJ
homology_NN with_II Ran_NN BP2_NN/_SYM Nup_NN 358_MC ,_, a_DD nucleopo-
rin_NN component_NN ,_, showing_VVG that_CST BS-63_NN was_VBD a_DD
member_NN of_II the_DD NPC_NN family_NN ._.’’

These files are then used for training a HMM. The parameters the HMM determine how

many characters to use as the basis for the model (8), the total number of characters (256),

and an interpolation parameter for smoothing (8.0). According to LingPipe, these are

reasonable default settings for English data.

In order to use LingPipe for our purpose, we converted our training corpus files to the

format recognized by the LingPipe/MedPost. We implemented two HMM models. In the

first HMM model all frequent words are used as states. In the second HMM model, for fair

comparison to the regular expressions classifier, all the words that are considered in the

regular expressions classifier are used as tags in the HMM implementation. In addition we

use three more tags: (1) ni—for words that are not important; (2) neg—tag for negative

diagnosis only; (3) pos—tag for positive diagnosis only. For example, the sentence ‘‘the
patient does not appear to be with an\diagnosis[’’ is transformed to the tagged sentence:

‘‘the_ni patient_patient does_ni not_not appear_ni to_to be_ni with_ni an_ni
diagnosis_neg.’’

Our algorithm was also compared to the CRF algorithm. For this purpose, we used the

MALLET package (McCallum 2007) for implementing the CRFs. We examined two

2 The binary confusion matrix has four entries. Thus, by providing the values of these four measures, it is
possible to restore other measures presented in Sect. 4.1.2, such as precision and recall.

Inf Retrieval (2008) 11:499–538 521

123

options; in the first option we used the entire sentence as an input. In the second option, we

used only the substring that appeared before the concept to be tagged.

4.1.2 Evaluation metrics

The decision made by the classifier can be represented in a structure known as a confusion

matrix or contingency table. The goal of this experiment is examine the ability of classifier

to correctly identify negations. Thus, the confusion matrix has been defined with respect to

negations and has the following four categories (see Table 4): True positives (TP) are

terms that are correctly recognized as negated. False positives (FP) refer to non-negated

terms incorrectly labeled as negated. True negatives (TN) correspond to non-negated terms

correctly labeled as non-negated. Finally, false negatives (FN) refer to negated terms

incorrectly labeled as non-negated.

We use the well-known performance measures precision and recall (Van Rijsbergen

1979). Because there is a trade-off between the precision and the recall we also report their

harmonic mean known as F-Measure. The main criterion for evaluating classifiers is the

accuracy which is the proportion of correctly classified instances and the number of

instances in the test corpus. Given the confusion matrix presented in Table 4, the above

evaluation metrics can be expressed mathematically as following:

Recall = TP/(TP + FN)

Precision = TP/(TP + FP)

Accuracy = (TP + TN)/(TP + TN + FN + FP)

F-Measure = 2TP/(2TP + FN + FP)

4.2 Results

4.2.1 Overall results

Table 5 presents the performance measures value obtained by the regular expressions

classifiers compared to: (1) ‘‘Bag-of-words’’; (2) NegEx classifier; (3) HMM classifier and

(4) CRF classifier. Moreover, we compare the proposed cascaded algorithm with other

regular expression-based classifiers: AdaBoost with C4.5 as inner classifier, AdaBoost with

Decision Stump as inner classifier and a single C4.5 decision tree. Experimental evaluation

is performed using ten fold cross-validation. The superscript ‘‘+’’ indicates that the per-

formance of LCS Cascade is significantly higher than the corresponding algorithm using

paired t-test at confidence level of 95%.

The results indicate that ‘‘Bag-of-words’’ obtains moderate Precision scores (the pre-

cision regarding the negative label) and moderate Recall scores (recall regarding the

negative label). On the other hand NegEx obtains high Recall scores and moderate Pre-

cision scores. All regular expressions based classifier obtain both high Precision and high

Recall. Moreover, no method has significantly outperformed the cascaded classifiers

Table 4 A binary confusion matrix

Classified negated Classified non-negated

Actually negated TP FN

Actually non-negated FP TN

522 Inf Retrieval (2008) 11:499–538

123

approach. Specifically, the new method outperforms HMM and CRF. Thus, regular

expressions outperform other negation algorithms in both F-Measure (F-Measure precision

regarding the negative label) and Accuracy. The LCS and Teiresias show similar

performance.

Although previous works have shown that CRF significantly outperforms HMM, in this

experimental study CRF’s improvement is moderate. Maybe it can be explained by the fact

that the major advantage of CRF POS tagger versus HMM POS tagger is in the ability of

CRF to model orthographic and morphological word features, which is beyond the scope of

this paper (all methods examined in this paper use words as features).

4.2.2 The suitability of the first cascaded decision tree

Figure 13 describes the Precision the regular expressions family ‘‘no .{0,D}\diagnosis[’’

as a function of the distance D. It is clearly shown that the Precision increases with the

decrease of D, maximum achieved when D = 0. This explains the cascade strategy that

enables high Precision in the first cascade without decreasing Recall. The Recall is not

affected since this cascade can only classify negative instances. Instances that are not

classified as negative are sent to the next cascade.

4.2.3 The effect of training set size

Figure 14 presents the effect of the training set size on the predictive performance and the

number of regular expressions. It shows how the accuracy based on 10 folds cross-vali-

dation converges as the training set size is increased. As shown from the graph, the number

of regular expressions (postfeature selection) is not directly correlated with the classifier

accuracy.

Table 5 Benchmark results

Method Precision Recall F-measure Accuracy

Bag of words +86.1 ± 4.1% +87 ± 5.3% +85.2 ± 3.9% +86 ± 3.3%

NegEx +87.7 ± 0.4% 99.0 ± 0.6% 93.0 ± 0.3% 92.6 ± 0.3%

HMM

Frequent words as states +88.4 ± 4.1% +85.5 ± 3.4% +86.9 ± 3.6% +87.1 ± 3.2%

Cascade words as states +87.1 ± 3.4% +93.8 ± 3.5% +90.3 ± 2.9% +90.0 ± 3.1%

CRF

All words in the sentence +88 ± 4.5% +89.1 ± 2.4% +88.5 ± 2.7% +88.6 ± 2.2%

Only words that appear before
the concept

92.7 ± 4.9% +90.3 ± 4.5% +91.4 ± 3.7% +91.5 ± 3.5%

Regular expression

Single DT with LCS +92.3 ± 3.7% +85.7 ± 3.2% +89 ± 3.5% +89.4 ± 3.1%

Single DT Teiresias +90 ± 3.3% 95.1 ± 2.5% 92.5 ± 2.7% +92.3 ± 2.7%

10 AdaBoost DTs with LCS 94.9 ± 1.9% +89.2 ± 1.4% 92 ± 1.5% 92.2 ± 1.2%

70 AdaBoost of decision stumps
with LCS

96.3 ± 1.6% +83.8 ± 1.1% +89.6 ± 1.4% +90.3 ± 1%

Cascade DTs with LCS 94.4 ± 2.4% 97.4 ± 2.5% 95.9 ± 1.9% 95.8 ± 1.8%

Cascade DTs with Teiresias 94.6 ± 2.6 96.7 ± 2.9 95.6 ± 2.1 95.6 ± 1.9

Inf Retrieval (2008) 11:499–538 523

123

4.2.4 The effect of the feature selection

Table 6 compares the accuracy obtained by the regular expressions classifier before and

after CFS feature selection based on 10 folds cross validation. The CFS filter eliminates on

average about 95% of the features while achieving substantial accuracy gain. The filtering

improves the classifier accuracy by about 5% on average.

4.2.5 The effect of the ensemble size

While the number of classifiers in the cascaded method is set to three, the number of

iterations in the AdaBoost algorithm cannot be predetermined and should be tuned to the

particular problem.

Figure 15 presents how the ensemble size affects the accuracy when the base classifier

is C4.5. The figure presents only the first 11 examined sizes based on 10 folds cross

validation. We also checked the ensemble size up to 20. However it has no effect on the

accuracy (it remains as the accuracy of ensemble size of 10). It can be seen that the

Fig. 13 Regular expression precision versus distance

Regular expressions classifier

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20

Training set size

A
cc

u
ra

cy

0

20

40

60

80

100

120

140

160

N
o

 o
f

re
g

u
la

r
ex

p
re

ss
io

n
s

Accuracy

No of regular
expressions

280260240220200180160140120100806040

Fig. 14 Regular expressions classifier training

524 Inf Retrieval (2008) 11:499–538

123

accuracy of the proposed method is improved from 89.39% to 92.20% (in ensemble size of

10).

Figure 16 presents the results obtained for AdaBoost using Decision Stump as base

classifier. In contrary to the number of iterations required with C4.5, Decision Stumps

requires many more iterations in order to converge to the optimal performance.

Performance Measures as a Function of Ensemble Size
Using C4.5 as Base Classifier

84%

86%

88%

90%

92%

94%

96%

98%

1 3 5

Ensemble Size (Number of Iterations)

Precision
Recall
F-Measure
Accuracy

1197

Fig. 15 Performance measures as a function of ensemble size using C4.5 as base classifier

Table 6 The effect of feature selection on accuracy

Classifier mode Training set size

200 240 280

Cascaded LCS with only heuristic filtering

Number of regular expressions 2069 2300 2225

Accuracy 81.9% 82.8% 87.0%

Cascaded LCS with heuristic filtering followed by CFS

Number of regular expressions 138 49 35

Accuracy 88.5% 87.7% 91.1%

Performance Measures as a Function of Ensemble Size
Using Decision Stump as Base Classifier

35%

45%

55%

65%

75%

85%

95%

0 20
Ensemble Size (Number of Iterations)

Precision
Recall
F-Measure
Accuracy

806040

Fig. 16 Performance as a function of ensemble size using decision stump as base classifier

Inf Retrieval (2008) 11:499–538 525

123

4.2.6 Comparing regular expressions with bag of words

The results presented in the previous subsections indicated that the proposed method can

obtain higher accuracy than the simple ‘‘Bag-of-words’’. In this section, we are interested

in checking if the improved result implies that the regular expression approach covers all

predictive expressiveness of the ‘‘Bag-of-words’’. For this purpose we join the two datasets

into a single dataset, thus each instance is now characterized by a set of discovered patterns

and by a set of words. Table 7 presents the performance of the cascaded classifier based on

10 folds cross validation. It seems that adding the ‘‘Bag-of-words’’ attributes to the regular

expression attributes has reduced accuracy.

Table 7 presents also the classifier’s complexity. As this work focuses on cascaded

decision trees, the classifier complexity was measured as the total number of nodes,

including the leaves in all trees. It can be seen that employing regular expression patterns

can reduce the classifier complexity in about 20%.

Table 8 presents some of the patterns obtained by the proposed algorithm. Previous

works showed few words/phrases that are strong indicators of negative context (Averbuch

et al. 2004). In these works mostly two word phrases (e.g. ‘‘showed no’’) were therefore

finally considered by the classifier. Terms such as ‘‘no’’ and ‘‘not’’ were not included in

their profile because their sole appearance is not a sufficient indication for negation. In this

work the pattern learning algorithm learns the two phrase patterns as well as single term

patterns such as ‘‘no’’. This is because the term ‘‘no’’ is a strong negation indicator when it

precedes the medical concept, or when combined with additional patterns using a decision

tree. These examples explain the accuracy improvement in the proposed approach com-

pared to the ‘‘bag-of-words’’ based classifier.

4.2.7 Sensitivity to diagnosis type

Table 9 presents the results of a sensitivity analysis to diagnosis type. The most frequent

types of diagnosis were evaluated: Weigh loss; Nausea; Vomit; and Abdominal pain.

In this experiment we used the ‘‘leave-one-out’’ approach in which a certain diagnosis

type was used to generate the test set, while the remaining diagnosis types have been used

to create the training set. As can be seen, the accuracy for Vomit seems to be less than the

Table 7 Comparing regular expression with ‘‘Bag-of-words’’

Method Accuracy (%) Complexity

Regular expression 95.8 ± 1.8 82

Bag-of-words 87.3 ± 2.4 113

Combined 91.45 ± 2.7 126

Table 8 Example of patterns
learned

Negative patterns

.{0,200} no \DIAGNOSIS[

.{0,50}showed no.{0,50} \DIAGNOSIS[
Positive Patterns

.{0,100}patient.{0,5} has.{0,50} \DIAGNOSIS[

.{0,100}history of.{0,100} \DIAGNOSIS[

526 Inf Retrieval (2008) 11:499–538

123

average. Using the contingency table approach, we checked whether the differences are

statistically significant with confidence level of 95%, to conclude that the difference is not

statistically significant.

4.2.8 Sensitivity to different sources and document type

In this section, we add to the 1,766 instances that have been used till now, several corpora

which totally include 1,492 instances. These instances were obtained from other hospitals;

489 instances obtained from the Epilepsy care center of Missouri; 233 instances obtained

from the Staten island hospital; and 770 instances obtained from an anonymous north-

American hospital.

Table 10 indicates also the document type distribution of the new instances. While the

original training corpus was based only on discharge summaries, the new sources also

introduce new document type, such as outpatient and consult reports. The aim of this

experiment was to examine the generalization ability of the cascaded design on new data

sources or document type. For this purpose we used the ‘‘leave-one-out’’ approach, in

which a different data source is used as a test set in each iteration.

Table 11 summarizes the predictive power obtained by the cascaded classifier, CRF and

bag-of-words. The results indicate that there is deterioration in the predictive power of both

cascaded classifier and CRF regarding the negative class. However the accuracy is kept

high. This can be explained by the fact that the proportion of negative instances in the new

corpora is much smaller than in the training corpus. The performance of the new method is

usually slightly better than the other two methods. As suggested by Dietterich (1998), we

used the McNemar’s test with confidence level of 95% for examining if the differences in

Table 9 Sensitivity to diagnosis type

Diagnosis type Accuracy (%) Number of instances

Weight loss 96.27 134

Nausea 96.58 234

Vomit 91.43 245

Abdominal pain 97.98 247

Table 10 Corpus sentences distribution

Document types Data source Total

Mount Sinai Staten Island Epilepsy care
center

Anonymous
north-American

Consult 29 29

Discharge 1,766 584 2,350

Inpatient 162 162

Outpatient 489 24 513

Operations 204 204

Total 1,766 233 489 770 3,258

Inf Retrieval (2008) 11:499–538 527

123

T
a

b
le

1
1

A
cc

u
ra

cy
p

er
fo

rm
an

ce
o

f
v

ar
io

u
s

co
rp

o
ra

D
at

a
so

u
rc

e
C

as
ca

d
ed

re
g
u
la

r
ex

p
re

ss
io

n
s

C
R

F
B

ag
-o

f-
w

o
rd

s

P
re

ci
si

o
n

(%
)

R
ec

al
l

(%
)

F
-M

ea
su

re
(%

)
A

cc
u

ra
cy

(%
)

P
re

ci
si

o
n

(%
)

R
ec

al
l

(%
)

F
-M

ea
su

re
(%

)
A

cc
u
ra

cy
(%

)
P

re
ci

si
o

n
(%

)
R

ec
al

l
(%

)
F

-M
ea

su
re

(%
)

A
cc

u
ra

cy
(%

)

E
p

il
ep

sy
ca

re
ce

n
te

r
8

0
6

9
.8

4
7

4
.5

8
9

3
.8

7
6

6
.2

7
7

.7
8

7
1

.5
3

9
2

.0
2

7
4

.0
7

6
4

.7
2

6
9

.0
8

6
3

.3
9

S
ta

te
n

Is
la

n
d

8
8

.2
8

0
.3

6
8

4
.1

1
9

2
.7

0
8

5
.7

7
5

.0
0

8
0

9
1

8
6

.2
1

7
6

.3
4

8
0

.9
7

7
9

.8
3

A
n

o
n

y
m

o
u

s
n

o
rt

h
-

A
m

er
ic

an
8

2
.3

6
3

.6
4

7
1

.7
9

9
7

.1
4

7
7

.7
6

3
.6

4
7

0
.0

0
9

6
.8

8
7

6
.3

5
6

0
.0

8
6

7
.2

5
6

0
.7

8

M
o

u
n

t
S

in
ai

9
2

.3
9

1
.7

3
9

2
.7

8
9

2
.3

8
7

.4
8

7
.0

6
8

8
.0

6
8

7
.5

6
8

6
.9

6
8

4
.5

7
8

5
.7

4
8

4
.9

4

W
ei

g
h

te
d

a
v

er
a

g
e

8
7

.8
0

8
0

.9
9

8
4

.4
7

9
3

.7
1

8
1

.8
0

7
9

.2
7

8
0

.7
3

9
0

.6
8

8
2

.4
6

7
5

.2
1

7
8

.5
3

7
5

.6
3

528 Inf Retrieval (2008) 11:499–538

123

the accuracy and Recall are significant.3 The test results indicate that the cascaded clas-

sifier method is significantly better than the bag-of-words method in both criteria.

However, we could not conclude that the differences between the cascaded classifier

method and the CRF method are significant. Moreover, we find out that there is no

significant difference between the two methods when summing up the results from all data

sources.4

Using the contingency table approach, we checked whether the differences in the

performance obtained by a certain method on the various data sources are statistically

significant with confidence level of 95%, to conclude that there are no significant differ-

ences in any of the measures. This means that all methods provide stable performance

among different data sources.

Table 12 presents the accuracy obtained for each document type, using the ‘‘leave-one-

out’’ procedure. The performance of the new method is usually slightly better than CRF

method. We used the McNemar’s test with confidence level of 95%, to find out that there is

no significant difference between the methods in any of the document types when each

type has been checked separately. However as proposed by Demšar (2006), we are using

the Wilcoxon Signed-Rank Test, to examine whether the differences between the methods

are significant when taking into consideration all document types. We conclude that the

cascaded classifier is significantly better than the CRF method in the Precision and the

accuracy criteria. Moreover cascaded classifier is significantly better than the Bag-of-

Words method in the Recall, F-Measure and accuracy criteria.

Using the contingency table approach, we checked whether the differences in the

performance obtained by a certain method on the various document types are statistically

significant with confidence level of 95%, to conclude that there are no significant differ-

ences in any of the measures.

4.2.9 Sensitivity to the authorship

In this section, we analyze whether the reports’ author has an effect on the classifiers’

performance. Table 13 presents the distribution of different authors in the datasets.

Table 14 presents the mean performance obtained by using a ‘‘leave-one-out’’ procedure

such that in each iteration one author has been left out and used as a test set. A two-way

analysis of variance (ANOVA) with was performed. The dependent variable was the

accuracy. The results of the ANOVA showed that the main effects of the authors

F = 3.106, p \ 0.001 and the classification F = 25.63, p \ 0.001 are both significant.

4.2.10 Error analysis

Analyzing the reasons for wrong classifications, suggest the following six main categories

of error:

1. Compound sentence—Compound sentences are composed of two or more clauses that

are joined by a coordinating conjunction or a semicolon. For example: ‘‘The patient

denies any chest pain or shortness of breath but admits fever.’’ This sentence is built

from two clauses separated by the word ‘‘but,’’ which alters the context of the second

3 McNemar’s test cannot be used for the Precision measure or the F-Measure.
4 The Wilcoxon signed-rank test could not be used here because for sample sizes smaller than 5 there are no
possible critical values that would be significant at or beyond the baseline 95% level.

Inf Retrieval (2008) 11:499–538 529

123

T
a

b
le

1
2

P
er

fo
rm

an
ce

o
f

v
ar

io
u

s
d

o
cu

m
en

t
ty

p
es

D
o

cu
m

en
t

ty
p

e
C

as
ca

d
ed

re
g
u
la

r
ex

p
re

ss
io

n
s

C
R

F
B

ag
-o

f-
w

o
rd

s

P
re

ci
si

o
n

(%
)

R
ec

al
l

(%
)

F
-M

ea
su

re
(%

)
A

cc
u

ra
cy

(%
)

P
re

ci
si

o
n

(%
)

R
ec

al
l

(%
)

F
-M

ea
su

re
(%

)
A

cc
u

ra
cy

(%
)

P
re

ci
si

o
n

(%
)

R
ec

al
l

(%
)

F
-M

ea
su

re
(%

)
A

cc
u
ra

cy
(%

)

C
o

n
su

lt
1

0
0

1
0

0
.0

0
1

0
0

.0
0

1
0

0
.0

0
5

0
.0

0
1

0
0

.0
0

6
6

.6
7

9
6

.5
5

7
1

.4
3

5
2

.6
3

6
0

.6
1

5
5

.1
7

D
is

ch
ar

g
e

8
9
.3

1
9
1
.7

9
9
0
.5

3
9
2
.6

4
8
6
.2

8
9
.6

8
7
.9

9
0
.5

8
4
.3

2
7
4
.4

0
7
9
.0

5
7
7
.4

5

In
p

at
ie

n
t

5
0

.0
0

5
0

.0
0

5
0

.0
0

9
7

.5
3

4
0

.0
0

5
0

.0
0

4
4

.4
4

9
6

.9
1

5
0

.0
0

2
6

.7
9

3
4

.8
8

3
0

.8
6

O
u

tp
at

ie
n

t
7

7
.1

9
6

9
.8

4
7

3
.3

3
9

3
.7

6
6

6
.2

2
7

7
.7

8
7

1
.5

3
9

2
.4

0
7

5
.0

0
6

3
.8

3
6

8
.9

7
6

3
.1

6

O
p

er
at

io
n

8
8

.0
0

8
0

.0
0

8
3

.8
1

9
1

.6
7

8
7

.2
3

7
4

.5
5

8
0

.3
9

9
0

.2
0

8
6

.9
6

6
5

.5
7

7
4

.7
7

7
3

.5
3

530 Inf Retrieval (2008) 11:499–538

123

clause. The classifier might label all terms after the verb ‘‘deny’’ as negated including

the term ‘‘fever’’ based on the regular expression ‘‘denies .{0,60} \diagnosis[’’.

2. Future Reference—In this type of sentence, the patient is given instructions on how to

react to a symptom he may develop, but currently lacks. For example: ‘‘The patient

was given clear instructions to call for any worsening pain, fever, chills, bleeding.’’ In

this case the patient does not suffer from fever, chills or bleeding and a query for one

of these symptoms will mistakenly retrieve the document.

3. Negation indicating existence—although the meaning of a word might be negative, the

context in which it is written might indicate otherwise. For example: ‘‘The patient

could not tolerate the nausea and vomiting associated with Carboplatin.’’

4. Positive adjective—A sentence is written in a negative form, but an adjective prior to

one of the medical term actually indicates its existence. For example: ‘‘There were no

fevers, headache or dizziness at home and no diffuse abdominal pain, fair appetite with

significant weight loss.’’ The adjectives ‘‘fair’’ and ‘‘significant’’ in the sentence

indicates that the following symptoms actually do exist.

5. Wrong sentence boundaries—Sometimes the boundary of a sentence is not identified

correctly. In this case, one sentence is broken into two, or two sentences are considered

as one. For example: ‘‘She denies any shortness of breath, dyspnea, chest pain, G.I.

bleed, fever or chills.’’ In this case, the terms bleed, fever and chills were not

associated with the negation, as the negation phrase was part of the first sentence.

6. Other reasons—which are not covered by the first five categories.

Figure 17 presents the distribution of errors in for the proposed cascaded classifiers. It

can be seen that the ‘‘compound sentence’’ category is the origin for most of the errors.

Thus, it suggests that breaking the sentences into smaller clauses, may improve the

performance.

5 Discussion

The experimental study provides a strong evidence that in the negation problem, regular

expressions are better than bag-of-words, in both accuracy and compactness (i.e., obtaining

smaller models). In fact, regular expressions can be considered to be a generalization of the

bag-of-words representation or any n-gram representation. While there are several IE

methods that use regular expressions-like representation, such as WHISK, Soderland

(1999), we suggest arranging several expressions into a hierarchical structure which

constitutes a decision tree.

Using a decision tree as a base classifier in this case has several advantages: (1) the

sentence is not classified according to a single regular expression, but is classified based on

Table 13 Test corpus sentences distribution

Data source Number of distinct
authors

Mean reports
per author

Standard deviation of
reports per author

Mount Sinai 11 160.54 25.72

Staten Island 6 38.83 5.08

Epilepsy care center 3 163 17.63

Anonymous north-American 8 96.25 6.2

Inf Retrieval (2008) 11:499–538 531

123

T
a

b
le

1
4

A
cc

u
ra

cy
p
er

fo
rm

an
ce

o
f

v
ar

io
u
s

au
th

o
rs

D
at

a
S

o
u
rc

e
A

u
th

o
r

C
as

ca
d

ed
re

g
u

la
r

ex
p

re
ss

io
n

s
C

R
F

B
ag

-o
f-

w
o
rd

s

P
re

ci
si

o
n

(%
)

R
ec

al
l

(%
)

F
-M

ea
su

re
(%

)
A

cc
u
ra

cy
(%

)
P

re
ci

si
o

n
(%

)
R

ec
al

l
(%

)
F

-M
ea

su
re

(%
)

A
cc

u
ra

cy
(%

)
P

re
ci

si
o

n
(%

)
R

ec
al

l
(%

)
F

-M
ea

su
re

(%
)

A
cc

u
ra

cy
(%

)

E
p

il
ep

sy
ca

re
ce

n
te

r
1

7
8

.1
2

6
8

.1
7

7
2

.8
1

9
1

.1
5

7
0

.4
6

6
4

.5
9

6
7

.4
0

8
7

.8
3

7
0

.1
6

6
0

.7
9

6
5

.1
4

8
3

.9
7

2
7

6
.5

8
6

8
.7

5
7

2
.4

5
9

0
.9

2
7

5
.6

9
6

2
.2

2
6

8
.3

0
8

8
.6

8
6

9
.2

0
6

0
.8

9
6

4
.7

8
8

0
.1

4

3
7

4
.1

4
6

5
.8

5
6

9
.7

5
8

8
.3

5
7

6
.7

0
5

9
.6

8
6

7
.1

3
8

4
.0

9
6

9
.2

0
5

4
.6

2
6

1
.0

5
7

9
.3

9

S
ta

te
n

Is
la

n
d

1
8

1
.9

3
7

4
.5

8
7

8
.0

8
9

1
.1

5
7

5
.4

1
8

1
.7

7
7

8
.4

6
8

3
.2

0
7

5
.1

9
8

1
.6

0
7

8
.2

6
8

1
.1

8

2
8

7
.2

3
7

3
.2

4
7

9
.6

2
8

8
.7

2
8

2
.3

6
6

8
.3

1
7

4
.6

8
9

2
.3

9
8

8
.4

2
6

9
.9

5
7

8
.1

1
8

5
.8

8

3
8

8
.3

4
7

0
.7

6
7

8
.5

8
9

3
.6

9
8

3
.8

9
6

8
.0

5
7

5
.1

4
9

1
.6

5
7

5
.6

2
6

6
.8

2
7

0
.9

5
8

8
.0

2

4
9

5
.1

8
8

4
.2

4
8

9
.3

7
7

7
.8

9
9

3
.0

8
8

1
.0

3
8

6
.6

4
7

1
.6

1
8

7
.6

1
7

9
.3

2
8

3
.2

6
6

9
.7

5

5
8

9
.3

3
6

4
.2

8
7

4
.7

6
9

1
.1

5
8

1
.7

7
6

0
.7

7
6

9
.7

2
9

0
.0

6
8

1
.8

4
6

2
.7

5
7

1
.0

3
8

6
.4

7

6
9

9
.7

4
9

2
.6

7
9

6
.0

8
9

0
.2

7
9

0
.1

4
8

5
.3

1
8

7
.6

6
8

2
.8

4
8

6
.8

6
7

7
.5

1
8

1
.9

2
7

9
.0

3

A
n

o
n

y
m

o
u

s
n

o
rt

h
-

A
m

er
ic

an
1

8
1

.1
7

6
7

.1
3

7
3

.4
9

9
5

.1
4

7
6

.0
8

6
4

.3
3

6
9

.7
1

8
8

.5
9

6
9

.9
8

6
0

.4
1

6
4

.8
4

8
1

.7
3

2
9

3
.1

7
6

5
.6

6
7

7
.0

4
9

7
.0

0
8

4
.0

6
7

1
.4

2
7

7
.2

3
8

7
.3

3
8

2
.3

6
6

6
.7

2
7

3
.7

2
8

1
.8

9

3
8

0
.3

6
6

0
.1

1
6

8
.7

7
9

1
.4

2
7

3
.7

3
5

4
.6

6
6

2
.7

8
8

6
.1

7
7

2
.4

6
5

0
.3

7
5

9
.4

3
7

9
.6

7

4
8

8
.3

0
6

2
.9

4
7

3
.4

9
9

0
.7

3
8

8
.5

0
6

2
.0

6
7

2
.9

6
9

2
.2

9
9

4
.6

0
6

5
.5

5
7

7
.4

4
9

5
.7

8

5
8

0
.0

6
6

1
.6

2
6

9
.6

4
9

4
.6

5
7

5
.1

0
5

7
.4

9
6

5
.1

2
8

7
.9

0
7

1
.2

1
5

2
.3

0
6

0
.3

1
7

9
.5

5

6
7

7
.0

9
6

8
.0

0
7

2
.2

6
9

5
.1

9
7

2
.9

7
6

4
.2

2
6

8
.3

1
9

1
.8

2
7

9
.1

7
6

6
.1

4
7

2
.0

7
9

1
.0

9

7
8

2
.7

7
6

5
.0

2
7

2
.8

3
9

7
.9

8
7

4
.6

0
6

0
.1

9
6

6
.6

2
9

6
.0

5
7

2
.5

4
5

6
.1

1
6

3
.2

8
9

5
.5

2

8
7

9
.7

3
6

4
.4

1
7

1
.2

6
9

0
.6

2
7

4
.7

5
6

3
.4

1
6

8
.6

2
8

3
.8

9
7

4
.9

5
5

9
.8

3
6

6
.5

4
7

9
.4

3

532 Inf Retrieval (2008) 11:499–538

123

T
a

b
le

1
4

co
n

ti
n

u
ed

D
at

a
S

o
u
rc

e
A

u
th

o
r

C
as

ca
d

ed
re

g
u

la
r

ex
p

re
ss

io
n

s
C

R
F

B
ag

-o
f-

w
o
rd

s

P
re

ci
si

o
n

(%
)

R
ec

al
l

(%
)

F
-M

ea
su

re
(%

)
A

cc
u
ra

cy
(%

)
P

re
ci

si
o

n
(%

)
R

ec
al

l
(%

)
F

-M
ea

su
re

(%
)

A
cc

u
ra

cy
(%

)
P

re
ci

si
o

n
(%

)
R

ec
al

l
(%

)
F

-M
ea

su
re

(%
)

A
cc

u
ra

cy
(%

)

M
o

u
n

t
S

in
ai

1
9

3
.1

7
9

5
.2

7
9

4
.2

1
9

7
.0

0
8

3
.1

9
9

3
.1

1
8

7
.8

7
9

4
.7

3
8

1
.2

7
8

7
.9

6
8

4
.4

8
9

0
.2

3

2
8

8
.5

5
9

1
.4

3
8

9
.9

7
9

1
.4

2
8

6
.6

7
8

8
.1

5
8

7
.4

0
5

0
.4

8
7

3
.3

8
7

9
.1

4
7

6
.1

5
7

7
.9

7

3
9

1
.1

6
9

7
.1

4
9

4
.0

6
9

0
.7

3
8

7
.9

7
8

5
.0

5
8

6
.4

9
7

3
.0

6
8

3
.9

8
7

9
.1

6
8

1
.5

0
6

9
.4

5

4
9

7
.1

3
8

9
.1

2
9

2
.9

5
9

4
.6

5
8

0
.5

7
8

6
.5

4
8

3
.4

5
7

7
.1

2
7

6
.7

5
7

4
.2

0
7

5
.4

6
7

5
.0

0

5
9

0
.0

2
8

6
.2

8
8

8
.1

1
9

0
.5

4
8

4
.2

2
7

6
.8

4
8

0
.3

6
8

4
.5

3
8

2
.9

5
7

3
.1

2
7

7
.7

3
8

1
.5

1

6
8

7
.2

1
9

0
.3

5
8

8
.7

5
9

2
.8

2
8

6
.3

7
8

7
.7

3
8

7
.0

4
8

9
.5

0
8

1
.0

1
8

1
.1

1
8

1
.0

6
8

5
.7

7

7
9

7
.0

2
9

3
.1

8
9

5
.0

6
9

7
.1

6
9

2
.1

2
4

4
.5

4
6

0
.0

5
9

1
.4

2
8

6
.3

9
7

0
.6

0
7

7
.7

0
7

5
.4

2

8
9

5
.1

2
9

4
.6

0
9

4
.8

6
9

8
.1

4
9

2
.1

4
4

8
.2

6
6

3
.3

4
9

0
.7

0
7

8
.4

8
3

7
.4

5
5

0
.7

1
6

8
.6

5

9
1

0
0

.0
0

8
9

.4
1

9
4

.4
1

8
5

.6
0

8
5

.1
7

8
9

.3
8

8
7

.2
3

6
1

.4
2

6
7

.3
2

8
6

.7
6

7
5

.8
1

5
9

.4
3

1
0

9
5

.4
8

9
3

.0
6

9
4

.2
6

8
9

.0
6

6
0

.1
2

8
3

.8
2

7
0

.0
2

8
4

.0
4

3
7

.0
1

4
3

.7
7

4
0

.1
1

5
0

.1
7

1
1

9
7

.8
9

9
5

.1
7

9
6

.5
1

9
3

.9
8

6
4

.1
3

9
2

.1
2

7
5

.6
2

9
1

.1
9

8
4

.1
7

9
0

.1
2

8
7

.0
4

7
6

.7
4

Inf Retrieval (2008) 11:499–538 533

123

a set of regular expressions, i.e. this classifier can be used to indicate that a sentence is

classified to the label ‘‘positive’’ only if it matched two regular expressions and does not

match a third regular expression. This is more expressive than the classical approach in

which the classification is based on a single regular expression. In this way, instead of

searching for complicated regular expressions, we can search for simple regular expres-

sions and ‘‘rely’’ on the decision tree to combine them. In some cases, it is possible to

express a tree path comprised of several simple regular expressions as a single complicated

regular expression; (2) the hierarchical structure of a decision tree enforces an order

(priority) in the usage of regular expressions, i.e., given a new sentence, not all regular

expressions should be matched in advance but one regular expression at a time based on

the specific branch traversing. Moreover in this way the desired property of lexical analysis

known as un-ambiguity (also known as conflict resolution in Expert Systems) which is

usually resolved by the longest match and rule priority is inherently resolved here; (3) as

opposed to other classifiers (such as neural networks) the decision tree is a white box

model whose meaning can be easily explained.

The experimental study strengthens the well-known fact that it is possible to boost the

predictive performance by combining several decision trees. Nevertheless, an important

drawback of general-purpose ensemble method, such as AdaBoost (Freund and Schapire

1996), is that they are difficult to understand. The resulting ensemble is considered to be

less comprehensible since the user is required to capture several decision trees instead of a

single decision tree. In addition, the ensemble members might even contradict one another.

On the other hand, in the proposed cascaded design, the classifiers do not compete with

each other and do not contradict one another, but they are complementing each other.

Specifically, we either make a decision in the current cascade or postpone the decision to

the next cascade. In any case, the decision is made by a single classifier, and not by some

voting mechanism. Moreover, the cascade increases precision by adding additional layers

of decision tree classifiers and easily regulates the classifier complexity/precision tradeoff.

In addition, the cascaded design needs only three classifiers, as opposed to much larger

ensemble size in the case of AdaBoost.

Beside the fact that the proposed method has provided a higher accuracy than the HMM

and the CRF classifiers, it can be easily transformed into a maintainable source code.

Modern programming languages, such as Java or C#, or script languages such as Perl and

Python include inherent support for regular expressions. Any programmer can manipulate

these models quite easily as opposed to HMM or CRF models which requires that pro-

grammers be familiar with the notion of probability.

Positive
adjective 23%

Compound
sentence 42%

Negation
indicating

existence 9%

Wrong sentence
boundaries 8%

Reference to the
future 12%

Other 6%Fig. 17 Distribution of Errors
for the cascaded classifiers
algorithm

534 Inf Retrieval (2008) 11:499–538

123

As indicated in Sect. 4.2.4 feature selection can be used to improve predictive power.

The number of regular expressions (pre-feature selection) is usually greater than linear in

the number of instances in the training set. For instance, if the paired LCS approach is

used, then for every pair in the training set we obtain a regular expression. At first glance, it

seems redundant to use feature selection as a preprocess phase for the training phase.

Decision trees inducers, as opposed to other induction methods, incorporate in their

training phase a built-in feature selection mechanism. Still, it is well known that correlated

and irrelevant features may degrade the performance of decision trees inducers. Moreover,

in the way we create regular expressions there are many features that are correlative. This

phenomenon can be explained by the fact that feature selection in decision trees is per-

formed on one attribute at a time and only at the root node over the entire decision space.

In subsequent nodes, the training set is divided into several sub-sets and the features are

selected according to their local predictive power (Perner 2001). Geometrically, it means

that the selection of features is done in orthogonal decision subspaces, which do not

necessarily represent the distribution of the entire instance space. It has been shown that

the predictive performance of decision trees could be improved with an appropriate feature

pre-selection phase. Moreover using feature selection can reduce the number of nodes in

the tree, making it more compact.

Another way to avoid the ‘‘curse of dimensionality’’ in this case, is to merge several

expressions into one expression by generalizing them.5 However, this increases the risk of

over generalization. This is the typical sensitivity-Recall problem. For example if we

merge the first and second expressions in Table 8, we obtain the following reasonable

expression: .{0,200} no.{0,50} \DIAGNOSIS[. On the other hand merging the third and

fourth expressions results with the meaningless and over-generalized expression: .{0,220}
\DIAGNOSIS[.

A criterion for merging regular expressions can be based on existing computational

learning theoretical bounds (such as the VC-Dimension) that trade training accuracy with

model complexity. Merging regular expressions reduces a model’s complexity but at the

same time it might also reduce training accuracy (due to generalization). The merging can

be performed in any stage: pre-training like feature selection, during the actual training of

decision trees (as an extension to the splitting criterion), or post growing as an extension to

the pruning phase.

Regular expressions seem quite useful for the examined task. But they do have limi-

tations. For instance, because they do not use syntax but only use words and character

length gaps, they can make mistakes due to, for example, a training set that only showed

one adjective modifying a negated noun (e.g., no persistent cough) but a test set that has

multiple adjectives intervening between the negation phrase and the negated concept.

Moreover in order that a negative modifier will be included in the model, it should be

repeated at least twice in two different instances in the training set. This is because the

regular expressions are created by comparing two strings and identifying the common

substring. If the modifier appears only once then it will never be included in any of the

regular expressions.

5 Merging regular expressions that have been created by LCS or Teiresias is straightforward. The merging is
performed based on the specific words used in each pattern while ignoring the wild-cards. For instance the
‘‘wordy’’ representation of .{0,50}showed no.{0,50} \DIAGNOSIS[is showed no \DIAGNOSIS[. Thus,
we first remove the special characters from the two patterns. Then the LCS algorithm is used to create a new
generalized expression from these two ‘‘wordy’’ strings. Finally, the wild-cards that have been omitted are
reattached to the new pattern.

Inf Retrieval (2008) 11:499–538 535

123

6 Conclusions and further research

A new pattern-based algorithm for identifying context in free-text medical narratives is

presented. It is shown that the new algorithm is superior to previous methods. The new

algorithm manages to automatically learn patterns similar to manually written patterns for

negation detection, for example in the work of Mutalik et al. (2001), within the same level

of accuracy. The advantages of the new method are: accuracy improvement compared to

other machine learning methods, comprehensibility of the results and much faster than

manual knowledge engineering techniques with matching accuracy.

We suggest an obvious expansion in the medical domain, train the classifier to detect

context in general (e.g. in the family), not just the negated context. This requires a suffi-

ciently large training corpus with additional context categories. Another expansion in the

medical domain is to implement the method for finding relationships between concepts in

medical narratives. This can be useful for applications such as: Process control to identify

adverse events in medical treatment; Modern evidence based practices; and also in

extending the UMLS with new relations or concepts.

We suggest several research directions to improve the method itself. Cascading several

classifiers has shown to raise the classifier accuracy. Further study is needed to obtain

sufficient results for suggesting a methodology for cascading classifiers. Classifier com-

plexity versus accuracy is yet another issue for further research, to analyze the tradeoffs

between the number of patterns and the classifier performance. Additional studies are

required to examine if the proposed method can be efficient in identifying negation in other

domains (such as maintenance reports of technicians) and in other closely related problems

such as POS.

Acknowledgements The authors would like to thank J. Kannry, M.D. (Center for Medical Informatics,
Department of Medicine, Mount Sinai—NYU, New York, USA), T. Karson, M.D. (Departments of Clinical
Informatics and Cardiology, Mount Sinai School of Medicine, New York, USA) and M. Averbuch, M.D.
(Tel-Aviv Sourasky Medical Center, Israel) for providing the data that have been used in the experimental
study and for helping doing the initial prior studies which lead eventually to this study.

References

Aronow, D., Feng, F., & Croft, W. B. (1999). Ad hoc classification of radiology reports. Journal of the
American Medical Informatics Association, 6(5), 393–411.

Averbuch, M., Karson, T., Ben-Ami, B., Maimon, O., & Rokach, L. (2004). Context-sensitive medical
information retrieval, MEDINFO-2004, San Francisco, CA, September. IOS Press, pp. 282–262.

Bekkerman, R., & Allen, J. (2003). Using bigrams in text categorization. Department of Computer Science,
University of Massachusetts, Amherst, CIIR Technical Report IR-408.

Califf, M. E., & Mooney, R. J. (1999). Relational learning of pattern-match rules for information extraction.
In Proceedings of the Sixteenth National Conf. on Artificial Intelligence, pp. 328–334.

Caropreso, M., Matwin, S., & Sebastiani, F. (2001). A learner-independent evaluation of the usefulness of
statistical phrases for automated text categorization. In Text databases and document management:
Theory and practice (pp. 78–102). Idea Group Publishing.

Chapman, W. W., Bridewell, W., Hanbury, P., Cooper, G. F., & Buchanann, B. G. (2001). A simple
algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical
Informatics, 34, 301–310. doi:10.1006/jbin.2001.1029.

Ciravegna, F. (2001). Adaptive information extraction from text by rule induction and generalization, In
Proceedings of the 17th International Joint Conference on Artificial Intelligence.

Cohn, T. A. (2007). Scaling conditional random fields for natural language processing. PhD dissertation,
University of Melbourne.

Damashek, M. (1995). Gauging similarity with N-grams: Language-independent categorization of text.
Science, 267, 843–848.

536 Inf Retrieval (2008) 11:499–538

123

http://dx.doi.org/10.1006/jbin.2001.1029

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
Learning Research, 7(1), 1–30.

Dietterich, G. (1998). Approximate statistical tests for comparing supervised classification learning algo-
rithms. Neural Computation, 10, 1895–1924. doi:10.1162/089976698300017197.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algorithms and represen-
tations for text categorization. In Proceedings of the Seventh International Conference on Information
and Knowledge Management, pp. 148–155.

Esuli, A., & Sebastiani, F. (2005). Determining the semantic orientation of terms through gloss analysis. In
Proceedings of CIKM-05, the ACM SIGIR Conference on Information and Knowledge Management,
Bremen, DE.

Fiszman, M., & Haug, P. J. (2000). Using medical language processing to support real-time evaluation of
pneumonia guidelines. In Proceedings of AMIA Symposium, pp. 235–239.

Fiszman, M., Chapman, W. W., Aronsky, D., Evans, R. S., & Haug, P. J. (2000). Automatic detection of
acute bacterial pneumonia from chest X-ray reports. Journal of the American Medical Informatics
Association, 7, 593–604.

Freitag, D., & Kushmerick, N. (2000). Boosted wrapper induction. In Proceedings of the Seventh National
Conference on Artificial, Austin, Texas, pp. 577–583.

Freitag, D. (1998). Toward general-purpose learning for information extraction. In Proceedings of the
Thirty-Sixth Annual Meeting of the Association for Computational Linguistics and Seventeenth
International Conference on Computational Linguistics, pp. 404–408.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Machine Learning,
Proceedings of the Thirteenth International Conference, pp. 325–332.

Friedman, C., & Hripcsak, G. (1998). Evaluating natural language processors in the clinical domain.
Methods of Information in Medicine, 37, 334–344.

Friedman, C., Alderson, P., Austin, J., Cimino, J., & Johnson, S. (1994). A general natural-language text
processor for clinical radiology. Journal of the American Medical Informatics Association, 1(2), 161–
174.

Goldin, I., & Chapman, W. W. (2003). Learning to detect negation with ‘not’ in medical texts. In: E. Brown,
W. Hersh, & A. Valencia (Eds.), Proceedings of the Workshop on Text Analysis and Search for
Bioinformatics at the 26th Annual International ACM SIGIR Conference (SIGIR-2003).

Hall, M. (1999). Correlation-based feature selection for machine learning. PhD thesis, University of
Waikato.

Halteren, H., Zavrel, J., & Daelemans, W. (2001). Improving accuracy in word class tagging through the
combination of machine learning systems. Computational Linguistics, 27(2), 199–229. doi:10.1162/
089120101750300508.

Hersh, W. R., & Hickam, D. H. (1995). Information retrieval in medicine: the SAPHIRE experience.
Journal of the American Society for Information Science American Society for Information Science, 46,
743–747. doi:10.1002/(SICI)1097-4571(199512)46:10\743::AID-ASI5[3.0.CO;2-C.

Horn, L. R. (2001). A natural history of negation. Stanford, CA: Center for the Study of Language and
Information. ISBN: 1575863367

Hripcsak, G., Knirsch, C. A., Jain, N. L., Stazesky, R. C., Pablos-mendez, A., & Fulmer, T. (1999). A health
information network for managing innercity tuberculosis: Bridging clinical care, public health, and
home care. Computers and Biomedical Research, an International Journal, 32(1), 67–76. doi:
10.1006/cbmr.1998.1496.

Java, A. (2007). A framework for modeling influence, opinions and structure in social media. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, British Columbia,
Canada, pp. 1933-1934.

Kim, S., & Hovy, E. (2004). Determining the sentiment of opinions. In Proceedings of the 20th international
conference on computational linguistics, August 23–27 Geneva, Switzerland, International Conference
On Computational Linguistics.

Kupiec, J. M. (1992). Robust part-of-speech tagging using a hidden Markov model. Computer Speech &
Language, 6, 225–242. doi:10.1016/0885-2308(92)90019-Z.

Kushmerick, N., Weld, D. S., & Doorenbos, R. B. (1997). Wrapper induction for information extraction. In
International Joint Conference on Artificial Intelligence (IJCAI), pp. 729–737.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference on
Machine Learning (ICML-2001), pp. 282–289.

Leroy, G., Chen, H., & Martinez, J. D. (2003). A shallow parser based on closed-class words to capture relations
in biomedical text. Journal of Biomedical Informatics, 36, 145–158. doi:10.1016/S1532-0464
(03)00039-X.

Inf Retrieval (2008) 11:499–538 537

123

http://dx.doi.org/10.1162/089976698300017197
http://dx.doi.org/10.1162/089120101750300508
http://dx.doi.org/10.1162/089120101750300508
http://dx.doi.org/10.1006/cbmr.1998.1496
http://dx.doi.org/10.1016/0885-2308(92)90019-Z
http://dx.doi.org/10.1016/S1532-0464(03)00039-X
http://dx.doi.org/10.1016/S1532-0464(03)00039-X

Lindbergh, D. A. B., & Humphreys, B. L. (1993). The unified medical language system. In van Bemmel, J.
H. & McCray, A. T. (Eds.), 1993 yearbook of medical informatics (pp. 41–51). The Netherlands:
IMIA.

Lingpipe. Home page, \http://www.alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html[, Accessed
12 March 2007.

McCallum, A. K. MALLET: A machine learning for language toolkit. Home page, http://mallet.cs.umass.edu.
Accessed 12 March 2007.

Muslea, I., Minton, S., & Knoblock, C. (2001). Hierarchical wrapper induction for semistructured infor-
mation sources. Journal of Autonomous Agents and Multi-Agent Systems, 4, 93–114.

Mutalik, P. G., Deshpande, A., & Nadkarni, P. M. (2001). Use of general-purpose negation detection to
augment concept indexing of medical documents: A quantitative study using the UMLS. Journal of the
American Medical Informatics Association, 8(6), 598–609.

Myers, E. W., & An, O. (1986). (ND) Difference algorithm and its variations. Algorithmica, 1(1), 251–266.
doi:10.1007/BF01840446.

Nadkarni, P. (2000). Information retrieval in medicine: Overview and applications. Journal of Postgraduate
Medicine, 46(2), 116–122.

Perner, P. (2001). Improving the accuracy of decision tree induction by feature pre-selection. Applied
Artificial Intelligence, 15(8), 747–760. doi:10.1080/088395101317018582.

Quinlan, J. (1993). C4.5: Programs for machine learning. Morgan Kaufmann, Los Altos, CA.
Rigoutsos, I., & Floratos, A. (1998). Combinatorial pattern discovery in biological sequences: The TE-

IRESIAS algorithm. Bioinformatics (Oxford, England), 14(2), 229.
Rokach, L., Averbuch, M., & Maimon, O. (2004). Information retrieval system for medical narrative reports

(pp. 217–228). Lecture notes in artificial intelligence, 3055. Springer-Verlag.
Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1),

1–47. doi:10.1145/505282.505283.
Seymore, K., McCallum, A., & Rosenfeld, R. (1999) Learning hidden markov model structure for infor-

mation extraction. In Proceedings of the Sixteenth National Conference on Artificial Intelligence:
Workshop on Machine Learning for Information Extraction. Orlando, FL, pp. 37–42.

Smith, L., Rindflesch, T., & Wilbur, W. J. (2004). MedPost: A part-of-speech tagger for biomedical text.
Bioinformatics (Oxford, England), 20(14), 2320–2321. doi:10.1093/bioinformatics/bth227.

Soderland, S. (1999). Learning information extraction rules for semi-structured and free text. Machine
Learning, 34, 233–272. doi:10.1023/A:1007562322031.

Tottie, G. (1991). Negation in English speech and writing: a study in variation. Academic Press: New York.
Turney, P. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification

of reviews, In Proceedings of the 40th annual meeting of the Association for Computational Linguistics
(ACL’02), Philadelphia, PA, pp. 417–424.

Van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths.
Wilson, T., Wiebe, J., & Hoffmann, P. (2005). Recognizing contextual polarity in phrase-level sentiment

analysis. In Proceedings of the Conference on Human Language Technology and Empirical Methods in
Natural Language Processing, Vancouver, BC, Canada.

Witten, I. H., & Eibe, F. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.).
San Francisco: Morgan Kaufmann.

538 Inf Retrieval (2008) 11:499–538

123

http://www.alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://mallet.cs.umass.edu
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1080/088395101317018582
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1093/bioinformatics/bth227
http://dx.doi.org/10.1023/A:1007562322031

	Negation recognition in medical narrative reports
	Abstract
	Introduction and motivation
	Related works
	Text classification
	Bag-of-words
	n-gram
	Regular expressions
	Part-of-speech tagging

	Frameworks for information extraction
	Frameworks for labeling sequential data
	Sentiment analysis
	Identifying negative context in non-domain specific text (general NLP)
	Identifying negative context in medical narratives
	Works based on Knowledge engineering
	Works based on machine learning

	The proposed methodology
	The process overview
	Step 1: corpus preparation
	Step 1.1: tagging
	Step 1.2: sentence boundaries
	Step 1.3: manual labeling

	Step 2: patterns creation
	Learning regular expression patterns using longest common �subsequence algorithm
	Learning regular expression patterns using Teiresias algorithm

	Step 3: patterns selection
	Heuristics for pattern selection
	Correlation-based feature selection

	Step 4: classifier training
	Cascade of three classifiers
	Overview

	Experimental study
	Experimental setup
	Compared algorithms
	Evaluation metrics

	Results
	Overall results
	The suitability of the first cascaded decision tree
	The effect of training set size
	The effect of the feature selection
	The effect of the ensemble size
	Comparing regular expressions with bag of words
	Sensitivity to diagnosis type
	Sensitivity to different sources and document type
	Sensitivity to the authorship
	Error analysis

	Discussion
	Conclusions and further research
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

